Review: IFN-γ, TNF-α and IL-10 responses in children infected with malaria parasite

Nisreen Daffa Alla, Mohamed Yousif Sukkar


Immunity    against    malaria    requires    early    production    of    IFN-γ    and    TNF-α    while    excessive    uncontrolled    production    leads    to    malaria    complications.    Severe    malaria    is    an    end    result    of    interactions    of    many    factors    which    determine    the    immune    responses.    Genetic    profile,    repeated    infections,    parasite    influences    and    the    general    health    are    known    contributors.    Involvement    of    multiple    cell    types    and    multiple    cytokines    complicate    the    picture    further.    In    this    review    the    roles    of    cytokines    IL-10,    IFN-γ    and    TNF-α    in    the    pathogenesis    of    severe    malaria    in    children    are    discussed.    Since    severe    malarial    anemia    and    cerebral    malaria    represent    the    vast    majority    of    the    morbidity    and    mortality    cases,    the    review    is    focused    on    cytokines    responses    and    pathogenesis    of    these    two    malaria    complications.    Special    emphasis    is    given    to    factors    reported    to    affect    the    cytokines    levels    in    children    with    malaria.


IFN-γ; TNF-α ; IL-10 responses ; children infected;malaria parasite

Full Text:



Gupta S, Snow RW, Donnelly CHA, et al. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med. 1999; 5: 340–343. 2. Perkins DJ, Were T, Davenport CG, et al. Severe Malarial Anemia: Innate Immunity and Pathogenesis. Int J Biol Sci. 2011; 7: 1427– 1442. 3. Winkler AS, Salmhofer G, Helbok R, et al. In-hospital risk estimation in children with malaria-early predictors of morbidity and mortality. Jtrop pediatr. 2008; 54:184-191. 4. Dzeing-Ella A, NzeObiang PC, Tchoua R , et al. Severe falciparum malaria in Gabonese children: clinical and laboratory features. Malar J.2005; 4:1. 5. Akannaori BD, Kurtzhals JA, Gok BQ, et al: Distinct pattern of cytokines regulation in discrete clinical forms of plasmodium falciparum malaria, Eur cytokine netw.2000, 11:113-118. 6. Kwiatkowski D, Hill AV, Sambou I. TNF concentration in fatal cerebral, non-fatal cerebral and uncomplicated Plasmodium falciparum malaria. Lancet. 1990; 336:1201–4. 7. Ombrain M, Robinson LJ, Stanisic.../.../lap/ Desktop/teaching 2014/Association of Early Interferon-γ Production with Immunity to Clinical Malaria. A Longitudinal Study among Papua New Guinean Children.htm - aff-1 DI et al. Association of early interferon-γ production with immunity to clinical malaria: a

longitudinal study among Papua NewGuinean Children. Clin Infect Dis. 2008; 47: 1380-1387. 8. John CC, Opika-Opoka R, ByarugabaJ, et al. levels of RANTES are associated with mortality in children with cerebral malaria. J Infect Dis. 2006; 194: 837–845. 9. Winkler S, Willheim M, Baier K. Frequency of cytokine-producingT cells in patients of different age groups with Plasmodium falciparum malaria. Infect Dis. 1999; 179:209– 16. 10. May J B, Lell A J, Luty CGM, et al. Plasma interleukin-10: tumor necrosis factor (TNF-α) ratio is associated with TNF promoter variants and predicts malarial complications. Infect. Dis. 2000; 182:1570-1573. 11. Mbugi EV, Meijerink M, Veenemans J, et al. Alterations in early cytokine mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey. Malar J. 2010; 9:130.40. 12. Agudelo O, Bueno JVilla A, Maestre A. High IFN-gamma and TNF production by peripheral NK cells of Colombian patients with different clinical presentation of Plasmodium falciparum. Malar J. 2012;11:38, 13. John CHC, Moormann AM, Sumba PO, et al. Gamma interferon responses to plasmodium falciparum liver stage antigen 1 and thrombospondin-related adhesive protein and their relationship to age, transmission intensity, and protection against malaria. Infect Immun. 2004; 72: 5135–5142. 14. Miller JL, Sack BK, Baldwin M,et al. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 2014; 24: 436-47. 15. Luty AJ, Lell B, Schmidt-Ott R. Interferongamma responses are associated with resistance to re-infection with Plasmodium falciparum in young African children. J Infect Dis. 1999;

Nisreen Daffa Alla, Mohamed Yousif Sukkar

:980–8. 16. Moormann AM, Sumba PO, Chelimo K, et al. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites. J Infect Dis. 2013; 208:149–158. 17. DaffaAlla N, Sukkar MY. Pathophysiology of severe malaria in children: clinical and laboratory correlations. KMJ. 2012; 5:573-576. 18. Krupka M, Seyedl K, Feintuch CM et al, Mild Plasmodium falciparum malaria following an episode of severe malaria is associated with induction of the interferon pathway in Malawian children. Infect Immun.2012; 80:1150-1155. 19. Awandare, G.A. Naturally-acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes Infect. 2009; 11:811-9. 20. Pichyangkul S, Saengkrai P, Webster HK. Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop MedHyg. 1994. 21. Tsakonas KA, Riley AM: Innate immune response to malaria. Rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum infected erythrocytes. J Immunol. 2002; 169: 2956-2963. 22. Walther M, Woodruff J, Edele FD, et al. Innate immune responses to human malaria: Heterogeneous cytokine responses to bloodstage Plasmodium falciparum correlate with parasitological and clinical outcomes. J Immunol. 2006; 177:5736-5745. 23. Ong’echa JM, Davenport GC, Vulule JM, et al.Identification of inflammatory biomarkers for pediatric malarial anemia severity using novel statistical methods. Infect Immun. 2011; 79: 4674-4680. 24. Mellouk S, Green SJ, Nacy CA, et al.IFN

gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism. J Immunol. 1991; 146: 3971- 6. 25. Mellouk S, Hoffman SL, Liu ZZ, et al. Nitric oxide-mediated anti-plasmodial activity in human and murine hepatocytes induced by gamma interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Infect Immun.1994; 62:4043-6. 26. Connelly M, King CL, Bucci K, et al. T-cell immunity to peptide epitopes of liver-stage antigen 1 in an area of Papua New Guinea in which malaria is holoendemic. Infect Immun. 1997; 65:5082–5087. 27. Luty AJ, Bongartz M, Rezbach P, et al. Plasmodium falciparum liver-stage antigen-1 peptide-specific interferon-gamma responses are not suppressed during uncomplicated malaria in African children. Eur Cytokine Netw. 2001, 12:647-53. 28. Maneerat Y, Pongponratn E, Viriyavejakul P, et al. Cytokines associated with pathology in the brain tissue of fatal malaria. Southeast Asian J Trop Med Public Health. 1999; 30: 643-9. 29. Grau GE, Heremans H, Piguet PF, et al. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis. PNAS.1989; 86: 5572-5574. 30. Rudin W, Favre N, Bordmann G, Ryffel B. Interferon-gamma is essential for the development of cerebral malaria. Eur J Immunol. 1997 ;27: 810 – 815. 31. Weiser S, Miu J, Ball HJ, et al. Cytokine: Interferon-gamma synergizes with tumour necrosis factor and lymphotoxin-alpha to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. Cytokines. 2007; 37:84-91. 32. Claser C, Malleret B, Yee Gun S, et al. CD8+ T Cells and IFN-γ mediate the time-dependent

IFN-γ, TNF-α and IL-10 responses in children infected with malaria parasite

accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One. 2011; 6: e18720. 33. Amante FH, Haque A, Stanley AC, et al. Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol. 2010; 185:363242. 34. Belnoue E, Potter SM, Rosa DS, et al. Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol. 2008; 30:544-53 . 35. Armah HB, Wilson NO, Sarfo BY, et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J. 2007; 6: 147. 36. Sanni LA, Thomas SR, Tattam BN. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and non-cerebral malaria. Am J Pathol. 1998; 152:611–9. 37. Villegas-Mendez A, Greig R, Shaw TM et al, IFN-γ producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T Cell accumulation within the brain. J Immunol. 2012; 189: 968-979. 38. Robinson LJ, D’Ombrain MC, Stanisic DI, et al. Cellular tumor necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum malaria in children from Papua New Guinea. Infect Immun. 2009; 77: 3033-43. 39. Stanisic DI, Cutts J, Eriksson E,et al. γδ T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria. J Infect Dis. 2014; 210: 295-305. 40. Kremsner PG, Winkler S, Brandts C, et al. Prediction of accelerated cure in Plasmodium falciparum malaria by the elevated capacity of tumor necrosis factor production. Am J Trop

Med Hyg. 1995; 53:532-8. 41. Rockett KA, Awburn MM, Cowden WB, et al. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun. 1991; 59:3280. 42. Kumaratilake LM, Ferrante A, Rzepczyk CM. Tumor necrosis factor enhances neutrophilmediated killing of plasmodium falciparum. Infect Immun. 1990; 58: 788-793. 43. Sam H, Su Z,Stevenson MM. Deficiency in tumor necrosis factor-α activity does not impair early protective Th1 responses against bloodstage malaria. Infect Immun. 1999; 67:26602664. 44. Richards AL. Tumour necrosis factor and associated cytokines in the host’s response to malaria. Int J Parasitol. 1997; 27:1251-63. 45. John CC, Panoskaltsis-Mortari A, Opoka RO, et al. Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg. 2008; 78:198-205. 46. Brown H, Turner G, Rogerson S, et al. Cytokine expression in the brain in human cerebral malaria. J Infectious Diseases. 1999; 180:17421746. 47. Medana IM, Hunt NH, Chaudhri G. Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes. Am J Pathol. 1997; 150: 1473–1486. 48. Grau GE. Essential role of TNF and other cytokines in the pathogenesis of cerebral malaria: experimental and clinical study. Verh K AcadGeneeskd Belog.1992; 54: 155-175. 49. Dobbie MS, Hurst RD, Klein NJ, et al. Up- regulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumor necrosis factor-alpha in an in vitro model of the blood–brain barrier, Brain Res. 1999; 830: 330336. 50. Clark IA, Rockett KA, Cowden WB. Possible

Nisreen Daffa Alla, Mohamed Yousif Sukkar

central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet. 1992, 340:894-896. 51. Kuriyama K, Ohkuma S. Role of nitric oxide in central synaptic transmission: effects on neurotransmitter. Jpn J Pharmacol. 1995; 69: 18-39. 52. Othoro C, Lal AA, Nahlen B, et al. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in Western Kenya. J Infect Dis.1999; 179:279–82. 53. Casals-Pascual C, Kai O, Cheung JOP, et al. Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood.2006; 108:2569-2577. 54. Awandare GA, Kempaiah P, Ochiel DO, et al. Mechanisms of erythropoiesis inhibition by malarial pigment and malaria-induced proinflammatory mediators in an in vitro model. Am J Hematol. 2011; 86:155-62. 55. Clark IA, Chaudhri G. Tumour necrosis factor may contribute to the anemia of malaria by causing dyserythropoiesis and erythrophagocytosis. Br J Hematol. 1988; 70:99-103. 56. Keller CC, Davenport GC, Dickman KR. Suppression of prostaglandin E2 by malaria parasite products and antipyretics promotes overproduction of tumor necrosis factor-alpha: association with the pathogenesis of childhood malarial anemia. J Infect Dis. 2006; 193: 138493. 57. McGuire W, Knight JC, Hill AV, et al. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles, J Infect Dis. 1999, 179:28790. 58. Perera MK, Herath NP, Pathirana SL, et al. Association of high plasma TNF-alpha levels and TNF-alpha/IL-10 ratios with TNF2 allele in severe P. falciparum malaria patients in Sri

Lanka. Pathog Glob Health. 2013; 107:21– 29. 59. Saeftel M, Krueger A, Arriens S, et al. Mice deficient in interleukin-4 (IL-4) or IL-4 receptor α have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. Infect Immun. 2004; 72: 322-331. 60. Rosa´rio APF, Lamb T, Spence PH, et al. IL27 promotes IL-10 production by effector Th1 CD4+ T Cells: A critical mechanism for protection from severe immunopathology during malaria infection. J Immunol. 2012; 188: 1178–1190. 61. Malefyt RDW, Abrams J Bennett B, Figdor CG, et al. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991; 174:1209–1220. 62. Joyce DA, Steer JH. IL-4, IL-10 and IFNgamma have distinct, but interacting effects on differentiation-induced changes in TNF-alpha and TNF receptor release by cultured human monocytes. Cytokine. 1996; 8:49–57. 63. Portugal S, Moebius J, Skinner J, et al. Exposure-dependent control of malaria-induced inflammation in children. PLoSPathog.2014; 10:e1004079. 64. Jagannathan P, Eccles-James L,Bowen K, et al. IFNγ/IL-10 Co-producing Cells Dominate the CD4 Response to Malaria in Highly Exposed Children. Plos pathogen.2014. DOI: 10.1371. 65. Kossodo S, Monso C, JuillardP, et al. Interleukin-10 modulates susceptibility in experimental cerebral malaria, Immunology. 1997, 91: 536-540. 66. Sanni LA, Jarra W, Li C, et al. Cerebral edema and hemorrhages in interleukin 10 deficient mice infected with plasmodium chabaudi. Infect Immun J. 2004, 72: 3054-3058. 67. Pain A, Ferguson DJ, Kai O, et al. Platelet

IFN-γ, TNF-α and IL-10 responses in children infected with malaria parasite

mediated clumping of plasmodium falciparuminfected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl AcadSci USA. 2001; 98: 1805–1810. 68. Grau GE, Mackenzie CD, Carr RA, et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis. 2003; 187: 461-466. 69. Casals-Pascual C, Kai O, Newton CHJC, et al. Thrombocytopenia in falciparum malaria is associated with high concentrations of IL-10. Am J Trop Med Hyg. 2006; 75: 434-436. 70. Kurtzhals JA, Adabayeri V, Goka BQ. Low plasma concentrations of interleukin 10 in severe malarial anemia compared with cerebral and uncomplicated malaria. Lancet. 1998; 351:1768–72. 71. Nussenblatt V, Mukasa G, Metzger A, et al. Anemia and interleukin-10, tumor necrosis factor-alpha, and erythropoietin levels among children with acute, uncomplicated plasmodium falciparum malaria. Clin Diagn Lab Immun. 2001; 8: 1164–1170. 72. Metenou S, Dembélé B, Konate S, et al. Patent filarial infection modulates malariaspecific type 1 cytokine responses in an IL10-dependent manner in a filaria/malariaco-infected population. J Immunol. 2009; 183:916-24. 73. Dolo H, Coulibaly YI, Dembele B, et al. Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. PLoSNegl Trop Dis. 2012; 6:e1890. 74. Boeuf PHS, Loizon S, Awandare GA, et al. Insights into deregulated TNF and IL10 production in malaria: implications for understanding severe malarial anemia. Malar J. 2012; 11:253.

Ouma C, Davenport GC, Were T, et al. Haplotypes of IL-10 promotor variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Hum Genet. 2008; 124: 515-24.


  • There are currently no refbacks.

ISSN: 1858-5345