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 مُـسْــتخَْـلـصَ

متباين  (Anisotropic) متغير غير( Plasticity)لدونة نموذج يتم صياغة وتنفيذ  ،(Co-rotational) في إطار الدوران المشترك  ،في هذه الورقة

المعادلات التأسيسية  اغتص. (FRP) بات البوليمرات المقواة بالأليافغير الخطي لمركالالتحليل الهندسي ليستخدم في  (Invariant-based) الخواص

(Constitutive equations)  متسقة الاتجاهاتالموترات  دوالمتباينة الخواص في شكل (Isotropic tensor functions).  يعتمد النموذج على دالة

 Non-associative) هتبطغير مر لدن دالة جهد تستخدم وبالإضافة إلى ذلك، ،الضغط لىالمعتمدة عوص متابينة الخوا (Yield function)خضوع 

plastic potential)  في إطار  صياغةال وضعت ،ثمو من . مركبات البوليمرات المقواة بالألياففيما يخص أكثر واقعية  لدونةتشوهات  توصيفمن أجل

و من قبل المستخدم  يتم تعرفيه ذيالالبرنامج الفرعي عبر  (Abaqus/Standard) ابكوسالمحدودة  برنامج العناصر الدوران المشترك ويتم تنفيذها في

الجوانب  و تناقشضمن إطار الدوران المشترك  (Finite deformation kinematics) المتناهي التشوه كينامتيكيةيتم وصف . (UMATيومات )المسمى 

 .نموذجالطبيق قابلية تو  متانة تبينالتي و، ةالعددي الامثلةأداء النموذج من خلال مجموعة من  يقيم ،راياخالهامة المتعلقة بالمعالجة العددية والتنفيذ. 

 

ABSTRACT  

A co-rotational formulation and implementation of an invariant-based anisotropic plasticity model is presented for 

geometrically nonlinear analyses of Fiber Reinforced Polymer (FRP) composites. The anisotropic constitutive 

equations are formulated in the format of isotropic tensors functions. The model assumes an anisotropic pressure 

dependent yield function, and in addition to this, a non-associated plastic potential in order to model more realistic 

plastic deformations in FRP. The formulation is then cast in the co-rotational framework and implemented in the 

commercial finite element software Abaqus/Standard via the means of the user-defined capability UMAT. The finite 

deformation kinematics within the co-rotational frame are described and the important aspects regarding the numerical 

treatment and implementation are discussed. The performance of the model is assessed via a set of numerical 

simulations, which demonstrate its applicability and robustness. 

Keywords: FRP composites; Anisotropic plasticity; Co-rotational framework; FEM 
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1 Introduction 

In different engineering applications, the recent advent 

of new composites is promoting the replacement of 

traditionally employed materials. In various engineering 

applications, the recent development of innovative 

composites is promoting the substitute of traditionally 

utilized materials. In construction sector, Fiber 

Reinforced Polymer (FRP) composites are getting a 

substantial attractiveness mainly because of their 

flexibility, high strength-to-weight ratio, more rapid 

construction, increased durability and resistance to 

fatigue and corrosion, and lower routine maintenance 

and life-cycle costs [1]. However, when it comes to 

modeling and simulation these materials still pose a 

challenge. Because they exhibit rate-, temperature-, and 

pressure dependent as well as anisotropic material 

behavior and undergo large deformations during loading 

processes. 

In order to accurately determine the correct stress state in 

composites, as well as to evaluate its strengths, by the 

means of structural simulation via FEA, Fiber orientation 

(anisotropy) is a substantial parameter. In this respect, 

there exist two primary different strategies to consider 

and to model the anisotropiy in FRP composites: (i) 

multiscale approaches (FE2 techniques), and (ii) 

macroscopic phenomenological strategies. 

In [2], a thorough review on the multiscale modeling of 

composites is presented. However, as was amply 

discussed in the literature, one among the essential 

disadvantages of those multiscale techniques is the 

dramatic increase of the computational effort [3]. 

Consequently, in order to model the micro-structures of 

materials in practical engineering applications, the 

employment of multiscale techniques can be considered 

as rather limited and unpractical.  

Differing from the previous set of techniques, fiber 

orientation is accounted for by using anisotropic 

macroscopic phenomenological material models. In this 

approach, experiments are used to acquire the 

homogenized macroscopic material properties. In the 

literature, there exist a fair number of works devoted for 

phenomenological modeling of FRP composites. 

In general, the incorporation of anisotropy into 

macroscopic models can be carried out in different ways. 

A possible framework can be set up based on the 

invariant theory. Accordingly, anisotropic constitutive 

equations are represented in the format of isotropic 

tensor functions in terms of several tensor variables; 

kinematic or kinetic tensors, as well as additional 

structural tensors that represent the symmetries of the 

material under consideration. In [4], an extensive review 

of the recent developments in the theory, as well as 

numerical treatment of anisotropic materials, is given. 

In this contribution, an invariant-based anisotropic 

plasticity model is formulated and implemented within 

the co-rotational framework for it’s used in 

geometrically nonlinear analyses of FRP composites. In 

practical terms, the anisotropic constitutive equations are 

represented in the format of isotropic tensors functions. 

From the modeling viewpoint, anisotropic yield surfaces 

and non-associative plastic potential functions are 

introduced to regard the nonlinear inelastic behavior of 

these materials, see [5]. Non-associated plastic potential 

functions are introduced in order to model more realistic 

plastic deformations in FRP composites. The model is 

then cast in a co-rotational framework so that finite 

deformation responses can be simulated, wherein 

displacements and rotations are assumed finite while 

strains are assumed to be within the small (not exactly 

the small strain of linear deformation theory) to moderate 

rate [6]. From the computational standpoint, aspects 

concerning the corresponding algorithmic treatment of 

the proposed models, as well as the numerical 

implementation, are looked over. In particular, novel 

closed-form expressions necessary for the consistent 

finite element are derived. To assess the performance of 

the proposed model, a set of numerical simulations using 

the commercial finite element software Abaqus/Standard 

are presented. 

2 Kinematics in the Co-rotational Framework 

This section is devoted to the finite deformation 

kinematics within the co-rotational frame. For further 

details, the reader may refer to [6]. 

Assume a continuum body 𝓑 that is composed of 

infinitely many material points 𝑃 ∈ 𝓑. The placement 𝜒𝑡 

maps the material points 𝑃 ∈ 𝓑 to a subset of the 

Euclidean space ℝ3. At the initial time 𝑡0 the body 𝓑 

occupies the reference placement 𝓑0 ≡ χt0
(𝓑) ⊂ ℝ3 

and material points 𝐗 ≔ χ𝑡0
(𝑃) ∈ 𝓑0. As customary, the 

reference configuration is assumed to be undistorted 

stress-free. Subsequently, the corresponding current 

position of the continuum body is identified by 𝓑𝑡 ≡
χ𝑡(𝓑) ⊂ ℝ3, while the current position vector of an 

arbitrary point is denoted by 𝐱 ≔ χ𝑡(𝑃) ∈ 𝓑𝑡. The 

reference and the current configurations are related via 

the nonlinear deformation map 𝜑: 𝓑0 × [0, 𝑡] ⟶ ℝ3, 

where [0, 𝑡] denotes the time interval elapsed such that 

the reference material points (𝐗 ∈ 𝓑0) are mapped onto 

the current material points (𝐱 ∈ 𝓑𝑡), i.e. 𝐱 = 𝜑(𝐗, 𝑡). 

Accordingly, one defines the standard displacement 

vector as: 𝐮 ≔ 𝐱 − 𝐗. The incremental mapping from  

𝓑𝑛 to 𝓑𝑛+1 is denote by 𝜑̅(𝐱, 𝑡).  

The so-called deformation gradient 𝐅 is expressed as 

𝐅(𝐗, 𝑡) = 𝜕𝜑(𝐗, t) 𝜕𝐗⁄ = 𝟏 + ∇𝐮, where 𝟏 refers to the 

second-order identity tensor. Similarly, the incremental 

deformation gradient 𝐅̅ between 𝓑𝑛 and 𝓑𝑛+1 is given 

by 𝐅̅𝑛+1 = 𝜕𝐱𝑛+1 𝜕𝐱𝑛⁄ = 𝟏 + ∇𝐮̅𝑛+1.  

Now, another mapping 𝜑̃(𝐱, 𝑡) that corresponds to the 

rotation of the body from 𝓑𝑛 to 𝓑̃𝑛 is introduced. This 

mapping describes the body in the rotated frame so that 

𝐱̃ = 𝜑̃(𝐱, 𝑡). Accordingly, the deformation gradient 𝐅̃ 

between 𝓑𝑛 and 𝓑̃𝑛 is given by 𝐅̃(𝐗, 𝑡) = 𝜕𝜑̃(𝐱, t) 𝜕𝐱⁄ . 

The previous relation leads to the definition of the 
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orthonormal co-rotational tensor which is denoted as 𝐑. 

Similarly, the incremental deformation gradient 𝐅̅̃ 

between 𝓑̃𝑛 and 𝓑̃𝑛+1 is given by 𝐅̅̃𝑛+1 = 𝜕𝐱̃𝑛+1 𝜕𝐱̃𝑛⁄ =
𝟏 + ∇𝐮̅̃𝑛+1. The tensor 𝐑 is computed in the 

computational setting for each element in the discretized 

domain based on the co-rotational procedure, see [6].  

Figure 1, schematically depicts the referential, spatial 

and co-rotational domain of the continuum body 𝓑.  

Following the co-rotational formulation procedure, an 

arbitrary motion of the continuum body 𝓑 is assumed to 

be decomposed into a rigid body motion, superimposed 

by a pure relative deformation [6]. 

 

Figure 1: Schematic representation of the referential 

(black), spatial (blue) and co-rotational frame (red). 

In such case, the pure deformation part of the 

displacement field tends to be small when the 

incremental motion is sufficiently small. Based on this 

argument, in the rotated frame, the magnitude of 

calculated strains is of the order of small strains.  

In the FE spatially discretized domain, the proposed 

decomposition can be achieved for each element by 

defining a local co-rotational coordinate frame that does 

not deform, but it rotates and translates with the element. 

After having on hand the pure deformation part of the 

displacement field, the strain is then computed with 

respect to this local frame. In this frame, the discrete 

gradients of the pure deformational field are small, so 

also the strain as compared to the element dimension. 

This is the main idea that is used to simplify the updated 

Lagranian formulation to the co-rotational formulation.    

3 Constitutive Formulation 

This section presents the constitutive formulation of the 

anisotropic invariant-based model for FRP composites. 

Note that, the constitutive equations are formulated with 

respect to the co-rotational frame 𝓑̃𝑛. However, for 

notational simplicity, explicit indication (∗̃) is being 

omitted.   

From the modeling standpoint, the mechanical 

response admits a tensor-based representation 

through the definition of a second order structural 

tensor in the rotated frame 𝐀, which is defined as: 

𝐀 ≔ 𝐚⨂𝐚  (1) 

where 𝐚 identifies the fiber orientation vector in the 

rotated frame. 

Based on the flow theory of plasticity, the total strain 

tensor 𝜺 is assumed to be additively split into elastic 𝜺𝑒 

and plastic 𝜺𝑝 counterparts: 

𝜺 = 𝜺𝑒 + 𝜺𝑝  (2) 

3.1 Transversely Isotropic Free Energy Definition 

To formulate the constitute equations, the existence of a 

Helmholtz free energy function, 𝜓(𝜺𝑒 , 𝐀, 𝜶) is assumed. 

This free energy is a function of the elastic strain 𝜺𝑒 and 

the structural tensor 𝐀 in the in the rotated frame, and the 

internal variable set 𝜶 that accounts for the inelastic 

material response along the deformation process: 

𝜓(𝜺𝑒 , 𝐀, 𝝃) =
1

2
𝜺𝑒: ℂ: 𝜺𝑒 + 𝜓ℎ𝑎𝑟𝑑(𝝃)  (3) 

Where 𝜓ℎ𝑎𝑟𝑑(𝝃) accounts for the hardening part of the 

free-energy function. 

The Cauchy stress tensor 𝝈 and the elastic constitutive 

operator ℂ are defined as the first and the second 

derivative of the free energy with respect to elastic strain 

tensor, respectively: 

𝝈 ≔ 𝜕𝜓 𝜕𝜺𝑒⁄ ;  ℂ ≔ 𝜕2𝜓 𝜕𝜺𝑒𝜕𝜺𝑒⁄  (4) 

For transversely isotropic materials, the elasticity 

operator adopts the form: 

ℂ ≔ 𝜕2𝜓 𝜕𝜺𝑒𝜕𝜺𝑒⁄   = 𝜆𝟏⨂𝟏 + 2𝜇1𝐈 + 𝛼(𝟏⨂𝐀 +
𝐀⨂𝟏) + 2(𝜇2 − 𝜇1)𝐈𝐀  + 𝛽𝐀⨂𝐀  (5) 

where 𝐈 refers to the fourth-order identity tensor, whereas 

𝐈𝐀 = 𝐀𝑖𝑚𝐈𝑗𝑚𝑘𝑙 + 𝐀𝒋𝒎𝐈𝑚𝑖𝑘𝑙, and 𝜆, 𝜇1, 𝜇2, 𝛼, 𝛽 denote 

the elastic constants.  

3.2 The Clausius-Plank Inequality 

The so-called Clausius-Plank inequality for internal 

dissipation 𝒟𝑖𝑛𝑡 takes the form: 

𝒟𝑖𝑛𝑡 = 𝝈: 𝜺̇ − 𝜓̇ ≥ 0  (6) 

Complying with the standard Truesdell and Noll 

procedure and recalling the previous definition given in 

Eq. (6), the following constitutive equations arise from 

Eq. (3): 

𝝈 ≔ 𝜕𝜓 𝜕𝜺𝑒⁄ = ℂ: 𝜺𝑒  (7) 

𝚪 ≔ − 𝜕𝜓 𝜕𝝃⁄ = − 𝜕𝜓ℎ𝑎𝑟𝑑 𝜕𝝃⁄   (8) 

where 𝚪 denotes the so-called hardening force. 

With the previous definitions at hand, incorporating Eqs. 

(7) and (8), the restriction over the internal dissipation to 

fulfill the second law of the thermodynamics reads: 

𝒟𝑖𝑛𝑡 = 𝝈: 𝜺𝑝̇ − 𝚪 ∗ 𝝃̇ ≥ 0  (9) 
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where the operator ∗ stands for any arbitrary product. 

3.3 Yield and Plastic Potential Functions 

The elastic domain 𝔼, assuming the maximum 

dissipation principle, can be defined as: 

𝔼 = {(𝝃, 𝜺̅𝑝)|ℱ(𝝈, 𝐀, 𝜺̅𝑝) ≤ 0}  (10) 

where 𝜺̅𝑝 refers to the so-called equivalent plastic strain. 

The equivalent plastic strain in the current formulation is 

defined by: 

𝜺̅𝑝 ≔ √
1

2
‖𝜺𝑝‖ = √

1

2
𝜺𝑝: 𝜺𝑝  (11) 

A transversely isotropic yield surface ℱ(𝝈, 𝐀, 𝜺̅𝑝) that 

accounts for the pressure dependency and plastic 

inextensibility of endless FRP composites along the fiber 

direction is constructed as follows: 

ℱ(𝝈, 𝐀, 𝜺̅𝑝) = 𝜍1𝐼1 + 𝜍2𝐼2 + 𝜍3𝐼3 + 𝜍4𝐼3
2 ≤ 0  (12) 

𝐼𝑖(𝑖 = 1,3) identifies the stress invariants, which are 

defined as: 

𝐼1 = (Tr[𝝈 ⋅ 𝝈] + (Tr[𝐀 ⋅ 𝝈])2 − 2Tr[𝐀 ⋅ 𝝈 ⋅ 𝝈] −
(Tr[𝝈] − Tr[𝐀 ⋅ 𝝈])2)/2  (13) 

𝐼2 = Tr[𝐀 ⋅ 𝝈 ⋅ 𝝈] − (Tr[𝐀 ⋅ 𝝈])2  (14) 

𝐼3 = Tr[𝝈] − Tr[𝐀 ⋅ 𝝈]  (15) 

The four parameters 𝜍𝑖(𝑖 = 1,4), and their corresponding 

invariants represent different loading states. The first 

parameter 𝜍1 is related to transverse shear loading, while 

𝜍𝟐 accounts for the material performance under in-plane 

shear loading. The parameters 𝜍3 and 𝜍4 regard loading 

conditions transverse to the fiber direction.  

A schematic representation of the yield surface in the 

invariant space is portrayed in Figure 2. 

 

Figure 2: Schematic illustration of the yield surface 

in the invariant space. 

In line with [5], a non-associative flow rule is introduced 

in the present model, i.e. the evolution of the plastic 

strains is not governed by the gradient of the yield 

function. Accordingly, a plastic potential function 

𝒢(𝝈, 𝐀, 𝜺̅𝑝) is introduced. By omitting the linear term 

associated with 𝐼3 from the definition of the yield 

function, the plastic flow function is defined as follows: 

𝒢(𝝈, 𝐀, 𝜺̅𝑝) = 𝜄1𝐼1 + 𝜄2𝐼2 + 𝜄3𝐼3
2 ≤ 0  (16) 

where 𝜄𝑖(𝑖 = 1,3) are the set of plastic potential 

parameters. 

3.4 Internal Variables Evolution Equations 

The evolution equations of the internal variables, namely 

the plastic strains 𝜺𝑝 and the hardening variables 𝝃, are 

expressed by the following rates: 

𝜺𝑝̇ = 𝛾 𝜕𝒢 𝜕𝝈⁄ ; 𝝃̇ = 𝜕𝒢 𝜕𝚪⁄   (17) 

where 𝛾 refers to so-called plastic multiplier. 

The customary loading/unloading conditions according 

to Kuhn-Tucker are expressed as: 

𝛾 ≥ 0;  ℱ(𝝈, 𝐀, 𝜺̅𝑝) ≤ 0;  𝛾ℱ(𝝈, 𝐀, 𝜺̅𝑝) = 0  (18) 

Moreover, the consistency condition renders: 

𝛾ℱ̇(𝝈, 𝐀, 𝜺̅𝑝) = 0  (19) 

3.5 Parameters Identification 

To determine the four yield surface parameters 𝜍𝑖(𝑖 =
1,4), for each of the triggering points of the yield locus 

shown in Figure 2, the yield stress vs. the corresponding 

plastic strain has to be obtained. Based on the yield 

function definition, Eq. (12), the following yield stresses 

are necessary to fully identify the yield surface: (i) 

uniaxial transverse tensile yield stress 𝜎𝑦
𝑢𝑡𝑡(𝜀𝑝

𝑢𝑡𝑡), (ii) 

uniaxial transverse compressive yield stress 

𝜎𝑦
𝑢𝑐𝑡(𝜀𝑝

𝑢𝑐𝑡), (iii) in-plane shear yield stress 𝜎𝑦
𝑖𝑠(𝜀𝑝

𝑖𝑠), 

and (iv) transverse shear yield stress 𝜎𝑦
𝑡𝑠(𝜀𝑝

𝑡𝑠). 

The purpose behind the introduction of a non-associative 

flow rule is the determination of a realistic plastic 

deformation behavior, particularly in terms of the so-

called plastic Poisson coefficients. Accordingly, the 

plastic potential parameters 𝜄𝑖(𝑖 = 1,3) are explicitly 

represented in terms of plastic Poisson coefficients, see 

[5]. 

3.6 Numerical Treatment 

The numerical scheme for the solution of the initial 

boundary value problem (IBVP) associated with the 

present problem is constructed in two principal steps: (i) 

the local (point) integration of the model utilizing an 

appropriate return mapping algorithm, (ii) the 

employment of the result arises from the previous step in 

the constitutive block of the weak formulation of the 

problem, which is discretized in space by means of finite 

element method and solved using the standard 

incremental-iterative Newton-Rahpson scheme. 

Locally, for the local integration of the local initial 

boundary value problem (IBVP), the backward Euler 

procedure is employed to trigger the update of the 

internal variables of the constitutive model. Herein, the 

so-called operator split (predictor-corrector) with a 

general return mapping is used as a solution process.  

Globally, using an implicit FE formulation, the 

computation of the algorithmic consistent tangent 

moduli, guarantees the quadratic convergence along the 

incremental-iterative solution process.  
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The thorough presentation of the numerical treatment is 

omitted here for the sake of the conciseness. For a 

detailed description, the reader is referred to [5]. 

4 Applications 

The constitutive formulation previously described is 

implemented into the commercial FE code 

Abaqus/Standard by means of the user-defined 

capabilities UMAT for the geometrically nonlinear 

analyses of FRP composites. The goal of this section is 

to discuss the implementation of the model and thereafter 

to assess the performance of the proposed formulation. 

4.1 Implementation in Abaqus/Standard 

During the global computation, the user subroutine 

UMAT is called at all material calculation points of 

elements for which the material definition includes a 

user-defined material behavior. Besides updating the 

stresses and solution-dependent state variables at the end 

of the increment, the subroutine must also provide the 

material Jacobian matrix, for the mechanical constitutive 

model, see [7]. 

The incremental strains in the rotated frame are passed in 

by the UMAT. The total strains are also given. However, 

their components are rotated to account for rigid body 

motion in the increment before UMAT is called.  

The total strains, as well as the stresses at the beginning 

of the increment, are passed in. Before the UMAT 

routine is called, the components of these quantities are 

rotated to account for rigid body motion in the increment. 

However, the stresses must be updated in this routine to 

be the stress tensor at the end of the increment. 

One major concern is the solution-dependent state 

variables. These variables are also passed in as the values 

at the beginning of the increment. However, to account 

for rigid body motion of the material, the vector-valued 

or tensor-valued state variables must be rotated. For this 

purpose, the rotation increment matrix (the increment of 

rigid body rotation of the element local co-rotational 

coordinate system) is provided so that vector- or tensor-

valued state variables can be rotated appropriately in this 

subroutine. Thereafter, the state variables must be 

updated based on the constitutive behavior. 

4.2 Model Verification and Validation: Transverse 

Uniaxial Tension and Compression 

The first application concerns the simulation of the 

transverse uniaxial tension compression of a Hex-Ply 

IM7-8552 UD carbon epoxy presented. For this purpose, 

a cube specimen with dimensions of 1 × 1 × 1 mm3 is 

used. The objective of this first example is the 

verification of the current formulation for its subsequent 

application in a more complex structural example. 

The material data (elastic and plastic properties) needed 

for the model calibration are taken from [8,9]. The elastic 

material properties are reported in Table 1. The plastic 

material properties are not provided here for the sake of 

the conciseness. 

Table 1. IM7-8552: elastic properties 

𝐸11(MPa) 𝐸22(MPa) 𝐺12(MPa) 𝜈12 𝜈23 

181500.43 9900.86 6160.76 0.0185 0.38 

For both, uniaxial tension and compression, the 

specimen is discretized by 25 elements. The 8-node 

linear brick element type C3D8 is used for the 

discretization. The boundary conditions imposed onto 

the FE model replicates those for uniaxial stress states, 

see Figure 3.  

Figure 4 reports the experimental-numerical 

correlations. In this graph, an excellent agreement 

between the experimental data and the numerical 

predictions can be observed. 

 

Figure 3: FE-discretization and undeformed/ 

deformed configuration: uniaxial transverse tension 

in Y direction (blue) and transverse compression in 

Z direction (red). 

 

Figure 4: Experimental numerical correlation of 

unidirectional carbon-epoxy IM7-8552 under 

transverse loading: tension (blue) and compression 

(red). 
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4.3 Structural Application: 3-Point Bending 

Now the 3-point bending of a UD FRP plate 

manufactured from IM7-8552 is considered.  

The geometric description of the plate is given in Figure 

5. The dimensions of the plate are: (i) length L = 60 mm, 

(ii) width B = 8 mm, and (iii) thickness t = 2 mm.  

 

Figure 5: 3-point bending of a UD FRP plate: FE-

discretization. 

After a mesh convergence study, the numerical model 

consists of the discretization of the FRP plate using 3840 

elements, whereas the pin for the loading application and 

support is meshed using 2100 elements. The plate is 

considered deformable, accordingly, the brick element 

type C3D8 is used for the discretization. The pin part is 

assumed to be discrete rigid body and the bilinear rigid 

quadrilateral element type R3D4 is employed.  

For the contact interaction between the rigid bodies and 

the plate, the balanced master-slave general contact 

algorithm is utilized for its ease. 

The external loading is applied through a prescribed 

vertical displacement downwards at the central pin equal 

to 4 mm.  

Figure 6 depicts the fiber orientation (material 

orientation) before the computation. The change in 

orientation predicted by the current model at the end of 

the simulation is shown in Figure 7. In this graph, a 

change of the material direction throughout the loading 

process is observed. This change is taking place due to 

the large rotations and displacements experienced by the 

UD sheet, which cannot be predicted using a 

geometrically linear constitutive model.  

Figure 6: 3-point bending of a UD FRP plate: 

Mapping of the fiber direction (red) before the 

computation. 

This becomes evident in the current example and 

highlights the necessity of triggering the evolution of the 

material (fiber) orientation along the loading and 

deformation process. This issue can be only performed 

using a geometrically nonlinear setting. 

 

Figure 7: 3-point bending of a UD FRP plate: 

Mapping of the fiber direction (red) after the 

computation. 

Moreover, Figure 8 shows the stress distribution along 

the plate. 

5 Conclusion 

In this paper, a co-rotational formulation of an invariant-

based anisotropic plasticity model including aspects of 

its numerical treatment and implementation within the 

FE framework has been presented for geometrically 

nonlinear analyses of composites.  

 

Figure 8: 3-point bending of a UD FRP plate: von 

Mises stress distribution. 

The proposed formulation assumed a pressure dependent 

yield surface and a non-associate flow rule to capture 

realistic evolution of the inelastic behavior.  

The model is then employed in a co-rotational 

framework so that geometrically non-linear effects can 

be captured. On the computational side, important 

aspects regarding the numerical treatment and 

implementation of the proposed formulation in 

Abaqus/Standard are discussed. 

Finally, the performance of the current model has been 

verified and validated through the simulation of uniaxial 

stress states in a UD FRP composites. Subsequently, the 

model has been incorporated into the simulation of a 3-

point bending problem. One key aspect regarded the 

possibility of triggering the preferential material 

orientation along the deformation process.  

The upcoming focus regards the employment of the 

model in the simulation of practical applications of FRP 
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composites where geometrical nonlinear effects play an 

important role.  
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