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ABSTRACT

A co-rotational formulation and implementation of an invariant-based anisotropic plasticity model is presented for
geometrically nonlinear analyses of Fiber Reinforced Polymer (FRP) composites. The anisotropic constitutive
equations are formulated in the format of isotropic tensors functions. The model assumes an anisotropic pressure
dependent yield function, and in addition to this, a non-associated plastic potential in order to model more realistic
plastic deformations in FRP. The formulation is then cast in the co-rotational framework and implemented in the
commercial finite element software Abaqus/Standard via the means of the user-defined capability UMAT. The finite
deformation kinematics within the co-rotational frame are described and the important aspects regarding the numerical
treatment and implementation are discussed. The performance of the model is assessed via a set of numerical
simulations, which demonstrate its applicability and robustness.
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1 Introduction

In different engineering applications, the recent advent
of new composites is promoting the replacement of
traditionally employed materials. In various engineering
applications, the recent development of innovative
composites is promoting the substitute of traditionally
utilized materials. In construction sector, Fiber
Reinforced Polymer (FRP) composites are getting a
substantial attractiveness mainly because of their
flexibility, high strength-to-weight ratio, more rapid
construction, increased durability and resistance to
fatigue and corrosion, and lower routine maintenance
and life-cycle costs [1]. However, when it comes to
modeling and simulation these materials still pose a
challenge. Because they exhibit rate-, temperature-, and
pressure dependent as well as anisotropic material
behavior and undergo large deformations during loading
processes.

In order to accurately determine the correct stress state in
composites, as well as to evaluate its strengths, by the
means of structural simulation via FEA, Fiber orientation
(anisotropy) is a substantial parameter. In this respect,
there exist two primary different strategies to consider
and to model the anisotropiy in FRP composites: (i)
multiscale approaches (FE2 techniques), and (ii)
macroscopic phenomenological strategies.

In [2], a thorough review on the multiscale modeling of
composites is presented. However, as was amply
discussed in the literature, one among the essential
disadvantages of those multiscale techniques is the
dramatic increase of the computational effort [3].
Consequently, in order to model the micro-structures of
materials in practical engineering applications, the
employment of multiscale techniques can be considered
as rather limited and unpractical.

Differing from the previous set of techniques, fiber
orientation is accounted for by using anisotropic
macroscopic phenomenological material models. In this
approach, experiments are used to acquire the
homogenized macroscopic material properties. In the
literature, there exist a fair number of works devoted for
phenomenological modeling of FRP composites.

In general, the incorporation of anisotropy into
macroscopic models can be carried out in different ways.
A possible framework can be set up based on the
invariant theory. Accordingly, anisotropic constitutive
equations are represented in the format of isotropic
tensor functions in terms of several tensor variables;
kinematic or kinetic tensors, as well as additional
structural tensors that represent the symmetries of the
material under consideration. In [4], an extensive review
of the recent developments in the theory, as well as
numerical treatment of anisotropic materials, is given.

In this contribution, an invariant-based anisotropic
plasticity model is formulated and implemented within
the co-rotational framework for it’s wused in
geometrically nonlinear analyses of FRP composites. In
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practical terms, the anisotropic constitutive equations are
represented in the format of isotropic tensors functions.
From the modeling viewpoint, anisotropic yield surfaces
and non-associative plastic potential functions are
introduced to regard the nonlinear inelastic behavior of
these materials, see [5]. Non-associated plastic potential
functions are introduced in order to model more realistic
plastic deformations in FRP composites. The model is
then cast in a co-rotational framework so that finite
deformation responses can be simulated, wherein
displacements and rotations are assumed finite while
strains are assumed to be within the small (not exactly
the small strain of linear deformation theory) to moderate
rate [6]. From the computational standpoint, aspects
concerning the corresponding algorithmic treatment of
the proposed models, as well as the numerical
implementation, are looked over. In particular, novel
closed-form expressions necessary for the consistent
finite element are derived. To assess the performance of
the proposed model, a set of numerical simulations using
the commercial finite element software Abaqus/Standard
are presented.

2 Kinematics in the Co-rotational Framework

This section is devoted to the finite deformation
kinematics within the co-rotational frame. For further
details, the reader may refer to [6].

Assume a continuum body B that is composed of
infinitely many material points P € B. The placement y,
maps the material points P € B to a subset of the
Euclidean space R3. At the initial time t, the body B
occupies the reference placement B, = x.,(B) R3
and material points X := x. (P) € B,. As customary, the
reference configuration is assumed to be undistorted
stress-free. Subsequently, the corresponding current
position of the continuum body is identified by B, =
x:(B) c R3, while the current position vector of an
arbitrary point is denoted by x:=x.(P) € B;,. The
reference and the current configurations are related via
the nonlinear deformation map ¢:B, X [0,t] — R3,
where [0, t] denotes the time interval elapsed such that
the reference material points (X € B,) are mapped onto
the current material points (x € B,), i.e. x = (X, t).
Accordingly, one defines the standard displacement
vector as: u :=x — X. The incremental mapping from
B,, to B,,,, is denote by @(x, t).

The so-called deformation gradient F is expressed as
F(X,t) = dp(X,t)/0X = 1 + Vu, where 1 refers to the
second-order identity tensor. Similarly, the incremental
deformation gradient F between B,, and B,,..; is given
by Fn+1 = axn+1/axn =1+ Vﬁn+1-

Now, another mapping @(x,t) that corresponds to the
rotation of the body from B,, to B,, is introduced. This
mapping describes the body in the rotated frame so that
% = @(x,t). Accordingly, the deformation gradient F
between B,, and B,, is given by F(X,t) = 0@ (x,t)/0x.
The previous relation leads to the definition of the
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orthonormal co-rotational tensor which is denoted as R.

Similarly, the incremental deformation gradient F
between B,, and B, isgiven by F,,,, = 0%,,,,/0%,,
1+Vu,,;. The tensor R is computed in the
computational setting for each element in the discretized
domain based on the co-rotational procedure, see [6].

Figure 1, schematically depicts the referential, spatial
and co-rotational domain of the continuum body B.

Following the co-rotational formulation procedure, an
arbitrary motion of the continuum body B is assumed to
be decomposed into a rigid body motion, superimposed

[N

by a pure relative deformation [6].

Figure 1: Schematic representation of the referential
(black), spatial (blue) and co-rotational frame (red).

In such case, the pure deformation part of the
displacement field tends to be small when the
incremental motion is sufficiently small. Based on this
argument, in the rotated frame, the magnitude of
calculated strains is of the order of small strains.

In the FE spatially discretized domain, the proposed
decomposition can be achieved for each element by
defining a local co-rotational coordinate frame that does
not deform, but it rotates and translates with the element.
After having on hand the pure deformation part of the
displacement field, the strain is then computed with
respect to this local frame. In this frame, the discrete
gradients of the pure deformational field are small, so
also the strain as compared to the element dimension.
This is the main idea that is used to simplify the updated
Lagranian formulation to the co-rotational formulation.

3 Constitutive Formulation

This section presents the constitutive formulation of the
anisotropic invariant-based model for FRP composites.
Note that, the constitutive equations are formulated with
respect to the co-rotational frame B,,. However, for
notational simplicity, explicit indication (¥) is being
omitted.
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From the modeling standpoint, the mechanical
response admits a tensor-based representation
through the definition of a second order structural
tensor in the rotated frame A, which is defined as:

A:=a®a (1)

where a identifies the fiber orientation vector in the
rotated frame.

Based on the flow theory of plasticity, the total strain
tensor € is assumed to be additively split into elastic &¢
and plastic €” counterparts:

e=¢g°+¢€° (2)
3.1 Transversely Isotropic Free Energy Definition

To formulate the constitute equations, the existence of a
Helmholtz free energy function, (&%, A, ar) is assumed.
This free energy is a function of the elastic strain £ and
the structural tensor A in the in the rotated frame, and the
internal variable set a that accounts for the inelastic
material response along the deformation process:

P& A §) =& Ce® + P (§) (3)
Where "4 (&) accounts for the hardening part of the
free-energy function.

The Cauchy stress tensor ¢ and the elastic constitutive
operator C are defined as the first and the second
derivative of the free energy with respect to elastic strain
tensor, respectively:

o:=0yY/0¢e°; C = 62¢/asease 4)

For transversely isotropic materials, the elasticity
operator adopts the form:

C:=0%Y/0e0e® =111+ 21+ a(1QA +
A®1) + 2(iy — u)l, + BAGA (5)

where I refers to the fourth-order identity tensor, whereas
IA = Aimljmkl +Ajmlmikl: al’ld /‘l, Ui, Up, &, ﬁ denote
the elastic constants.

3.2 The Clausius-Plank Inequality

The so-called Clausius-Plank inequality for internal
dissipation D;,,; takes the form:

Dine = 0:&— P =0 (6)

Complying with the standard Truesdell and Noll
procedure and recalling the previous definition given in
Eqg. (6), the following constitutive equations arise from

Eq. (3):
o:=0yY/0e® =C:e° (7)
I=—0y/0§ =—0ayp"*?/3§ (8)
where T denotes the so-called hardening force.

With the previous definitions at hand, incorporating Egs.
(7) and (8), the restriction over the internal dissipation to
fulfill the second law of the thermodynamics reads:

Dipe =0: 6P —TxE>0 (9)
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where the operator = stands for any arbitrary product.
3.3 Yield and Plastic Potential Functions

The elastic domain [E, assuming the maximum
dissipation principle, can be defined as:

E = {(§,87)|F(0,A €P) < 0} (10)

where gP refers to the so-called equivalent plastic strain.
The equivalent plastic strain in the current formulation is
defined by:

& = \/gngvu:\/gsz’:gv (12)

A transversely isotropic yield surface F(a, A, €P) that
accounts for the pressure dependency and plastic
inextensibility of endless FRP composites along the fiber
direction is constructed as follows:

F(0,A,8) = 611 + 6ol + 6315 + 64157 < 0 (12)

I;(i = 1,3) identifies the stress invariants, which are
defined as:

I, = (Tr[o - 6] + (Tr[A- 6])? — 2Tr[A -0 - 0] —
(Trle] — Tr[A - a])?)/2 (13)

I, =Tr[A-o-a] — (Tr[A- a])? (14)
I; = Tr[e] — Tr[A - o] (15)

The four parameters ¢; (i = 1,4), and their corresponding
invariants represent different loading states. The first
parameter ¢, is related to transverse shear loading, while
¢, accounts for the material performance under in-plane
shear loading. The parameters ¢; and ¢, regard loading
conditions transverse to the fiber direction.

A schematic representation of the yield surface in the
invariant space is portrayed in Figure 2.

Figure 2: Schematic illustration of the yield surface
in the invariant space.

In line with [5], a non-associative flow rule is introduced
in the present model, i.e. the evolution of the plastic
strains is not governed by the gradient of the yield
function. Accordingly, a plastic potential function
G(a,A,€P) is introduced. By omitting the linear term
associated with I; from the definition of the yield
function, the plastic flow function is defined as follows:

G(0,A,8) = I, + 1,1, + 131, < 0 (16)
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where (; (i = 1,3) are the set of plastic potential
parameters.

3.4 Internal Variables Evolution Equations

The evolution equations of the internal variables, namely
the plastic strains €” and the hardening variables §, are
expressed by the following rates:

g =ydG/do; & = 0G/aT (17)
where y refers to so-called plastic multiplier.

The customary loading/unloading conditions according
to Kuhn-Tucker are expressed as:

Yy = 0; F(6,A,8°) < 0; yF(o,A, ) =0 (18)
Moreover, the consistency condition renders:
yF(o,A,€%) =0 (19)
3.5 Parameters Identification

To determine the four yield surface parameters ¢;(i =
1,4), for each of the triggering points of the yield locus
shown in Figure 2, the yield stress vs. the corresponding
plastic strain has to be obtained. Based on the yield
function definition, Eq. (12), the following yield stresses
are necessary to fully identify the yield surface: (i)
uniaxial transverse tensile yield stress a” ,;; (P ¢¢), (ii)
uniaxial ~ transverse  compressive  yield  stress
07 et (€Pyer), (1) in-plane shear yield stress o” ;(€P5),
and (iv) transverse shear yield stress a¥ .o (P ;).

The purpose behind the introduction of a non-associative
flow rule is the determination of a realistic plastic
deformation behavior, particularly in terms of the so-
called plastic Poisson coefficients. Accordingly, the
plastic potential parameters ;(i = 1,3) are explicitly
represented in terms of plastic Poisson coefficients, see
[5].

3.6 Numerical Treatment

The numerical scheme for the solution of the initial
boundary value problem (IBVP) associated with the
present problem is constructed in two principal steps: (i)
the local (point) integration of the model utilizing an
appropriate return mapping algorithm, (ii) the
employment of the result arises from the previous step in
the constitutive block of the weak formulation of the
problem, which is discretized in space by means of finite
element method and solved using the standard
incremental-iterative Newton-Rahpson scheme.

Locally, for the local integration of the local initial
boundary value problem (IBVP), the backward Euler
procedure is employed to trigger the update of the
internal variables of the constitutive model. Herein, the
so-called operator split (predictor-corrector) with a
general return mapping is used as a solution process.

Globally, using an implicit FE formulation, the
computation of the algorithmic consistent tangent
moduli, guarantees the quadratic convergence along the
incremental-iterative solution process.
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The thorough presentation of the numerical treatment is
omitted here for the sake of the conciseness. For a
detailed description, the reader is referred to [5].

4 Applications

The constitutive formulation previously described is
implemented into the commercial FE code
Abaqus/Standard by means of the user-defined
capabilities UMAT for the geometrically nonlinear
analyses of FRP composites. The goal of this section is
to discuss the implementation of the model and thereafter
to assess the performance of the proposed formulation.

4.1 Implementation in Abaqus/Standard

During the global computation, the user subroutine
UMAT s called at all material calculation points of
elements for which the material definition includes a
user-defined material behavior. Besides updating the
stresses and solution-dependent state variables at the end
of the increment, the subroutine must also provide the
material Jacobian matrix, for the mechanical constitutive
model, see [7].

The incremental strains in the rotated frame are passed in
by the UMAT. The total strains are also given. However,
their components are rotated to account for rigid body
motion in the increment before UMAT is called.

The total strains, as well as the stresses at the beginning
of the increment, are passed in. Before the UMAT
routine is called, the components of these quantities are
rotated to account for rigid body motion in the increment.
However, the stresses must be updated in this routine to
be the stress tensor at the end of the increment.

One major concern is the solution-dependent state
variables. These variables are also passed in as the values
at the beginning of the increment. However, to account
for rigid body motion of the material, the vector-valued
or tensor-valued state variables must be rotated. For this
purpose, the rotation increment matrix (the increment of
rigid body rotation of the element local co-rotational
coordinate system) is provided so that vector- or tensor-
valued state variables can be rotated appropriately in this
subroutine. Thereafter, the state variables must be
updated based on the constitutive behavior.

4.2 Model Verification and Validation: Transverse
Uniaxial Tension and Compression

The first application concerns the simulation of the
transverse uniaxial tension compression of a Hex-Ply
IM7-8552 UD carbon epoxy presented. For this purpose,
a cube specimen with dimensions of 1 x 1 X 1 mm? is
used. The objective of this first example is the
verification of the current formulation for its subsequent
application in a more complex structural example.

The material data (elastic and plastic properties) needed
for the model calibration are taken from [8,9]. The elastic
material properties are reported in Table 1. The plastic
material properties are not provided here for the sake of
the conciseness.
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Table 1. IM7-8552: elastic properties

E;;(MPa) E;;(MPa) G,,(MPa) V12 V23
181500.43  9900.86 6160.76  0.0185 0.38
For both, uniaxial tension and compression, the

specimen is discretized by 25 elements. The 8-node
linear brick element type C3D8 is used for the
discretization. The boundary conditions imposed onto
the FE model replicates those for uniaxial stress states,
see Figure 3.

Figure 4 reports the experimental-numerical
correlations. In this graph, an excellent agreement
between the experimental data and the numerical
predictions can be observed.

Figure 3: FE-discretization and undeformed/
deformed configuration: uniaxial transverse tension
in Y direction (blue) and transverse compression in

Z direction (red).

250 JZ/E =
200 [0 test: compresson |
T ———sim: compression
< 150 2 Ll tet: tenson | .
g ﬂ sSmulation: tension
= / }_‘E—’-E*”E]
% 100 ﬂ/ E}/E/Q/E
/
50
a4
0 0.02 0.04 0.06
grain[-]

Figure 4: Experimental numerical correlation of
unidirectional carbon-epoxy IM7-8552 under
transverse loading: tension (blue) and compression
(red).
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4.3 Structural Application: 3-Point Bending

Now the 3-point bending of a UD FRP plate
manufactured from IM7-8552 is considered.

The geometric description of the plate is given in Figure
5. The dimensions of the plate are: (i) length L = 60 mm,
(ii) width B =8 mm, and (iii) thickness t = 2 mm.

Figure 5: 3-point bending of a UD FRP plate: FE-
discretization.

After a mesh convergence study, the numerical model
consists of the discretization of the FRP plate using 3840
elements, whereas the pin for the loading application and
support is meshed using 2100 elements. The plate is
considered deformable, accordingly, the brick element
type C3D8 is used for the discretization. The pin part is
assumed to be discrete rigid body and the bilinear rigid
quadrilateral element type R3D4 is employed.

For the contact interaction between the rigid bodies and
the plate, the balanced master-slave general contact
algorithm is utilized for its ease.

The external loading is applied through a prescribed
vertical displacement downwards at the central pin equal
to 4 mm.

Figure 6 depicts the fiber orientation (material
orientation) before the computation. The change in
orientation predicted by the current model at the end of
the simulation is shown in Figure 7. In this graph, a
change of the material direction throughout the loading
process is observed. This change is taking place due to
the large rotations and displacements experienced by the
UD sheet, which cannot be predicted using a
geometrically linear constitutive model.

2

L.

Figure 6: 3-point bending of a UD FRP plate:
Mapping of the fiber direction (red) before the
computation.
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This becomes evident in the current example and
highlights the necessity of triggering the evolution of the
material (fiber) orientation along the loading and
deformation process. This issue can be only performed
using a geometrically nonlinear setting.

Figure 7: 3-point bending of a UD FRP plate:
Mapping of the fiber direction (red) after the
computation.

Moreover, Figure 8 shows the stress distribution along
the plate.

5 Conclusion

In this paper, a co-rotational formulation of an invariant-
based anisotropic plasticity model including aspects of
its numerical treatment and implementation within the
FE framework has been presented for geometrically
nonlinear analyses of composites.

S, Mises
(Avg: 75%)
+4.513e+03

+3.761e+02
+0.000e+00

Figure 8: 3-point bending of a UD FRP plate: von
Mises stress distribution.

The proposed formulation assumed a pressure dependent
yield surface and a non-associate flow rule to capture
realistic evolution of the inelastic behavior.

The model is then employed in a co-rotational
framework so that geometrically non-linear effects can
be captured. On the computational side, important
aspects regarding the numerical treatment and
implementation of the proposed formulation in
Abaqus/Standard are discussed.

Finally, the performance of the current model has been
verified and validated through the simulation of uniaxial
stress states in a UD FRP composites. Subsequently, the
model has been incorporated into the simulation of a 3-
point bending problem. One key aspect regarded the
possibility of triggering the preferential material
orientation along the deformation process.

The upcoming focus regards the employment of the
model in the simulation of practical applications of FRP
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composites where geometrical nonlinear effects play an
important role.
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