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Abstract. 

   This paper describes a development of an algorithm for 

nonlinear optimization using sequential quadratic programming 

(SQP) method. The computation is performed through a number 

of steps. The improvement of the performance is achieved and 

compared to a version with line search.  
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                                                             مستخلص

 على الطريقة التقريبة للمعادلات    
ً
هدفت هذه الورقة لتوضيح خطوات تطور خوارزمية إستنادا

(حيت تم إنشاء خوارزمية لحساب القيم التفريبية لدالة الهدف وفق قيود SQPالتربيعية  )

  البرامج لحل  نماذج مختلفة من المعادلات الخطية والغير خطية. محددة. ثم تم تنفيذ هذا

1.Introduction:  

     Sequential quadratic programming or (SQP) in 

abbreviated form, is an iterative method for constrained 

nonlinear optimization. SQP methods used in mathematical 

problems for which the objective function and the 

constraints are twice continuously differentiable, are used to 

solve a sequence of optimization sub problems, each of 

which optimizes a quadratic model of the objective subject 

to a linearization of the constraints.  

    These methods  belonging  to the most powerful 

optimization algorithms, for solving differentiable nonlinear 

problems of the form (1) and (2): 

                   q                                          

(1)   

                                                              

(2) 

     The theoretical background is described for example in 

Stoer [12], and an excellent review is given by Boggs and 

Tolle [2]. SQP methods are also introduced in the books of 

Papalambros and Wilde [7] and Edgar and Himmelblau [3], 

among many others. Their excellent numerical performance 

has been tested and compared with other methods, and for 

many years they belong to the set of most frequently used 

algorithms for solving practical optimization problems. 

      A first idea of sequential quadratic programming or (SQP), 
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has been investigated in the Ph.D. thesis of Wilson [13]. 

Sequential quadratic programming methods became popular 

during the late seventies due to papers of Han [5,6] and Powell 

[9,10]. Their superiority over other optimization methods known 

at that time, was shown by Schittkowski [12]. Since then many 

modifications and extensions have been published on SQP 

methods. Nice review papers are given by Boggs and Tolle [2] 

and Gould and Toint [4]. As the presentation of even a selected 

overview is impossible due to the limited space here, we 

concentrate on a few important facts and highlights from a 

personal view without any attempt to be complete. 

     In this paper we describe mathematical models used for an 

Algorithm development, and some application of our Algorithm.      

 2. Methods 

2.1 Mathematical Models Used for Algorithm Development 

     With respect to the general QP problems, the main model 

problem to be solve is: 

                                                                    

(3)                      

   The basic idea of our project is to formulate a Matlab algorithm 

to solve a quadratic programming problem in each iteration 

which is obtained by  

linearization of the constraints and approximating the lagrangian 

function  quadratically. Starting from any , 

suppose that  is an actual approximation of the solution 

 an approximation of the multipliers, and   an 

approximation of the Hessian of the agrangian function, 

  then, a quadratic program(QP) of the forms 
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                 ,  

 is formulated and solved in 

each iteration.  

    It is considered the nonlinear, constrained optimization 

problem to minimize an objective function f under m nonlinear 

inequality constraints, 

                                                             

(4)                                     

where x is an n-dimensional parameter vector and  

 
    We assumed that the objective function and m constraint 

functions  are continuously differentiable 

on the whole . 

        In general, the unconstrained optimization problems are 

described as follows 

                                                                                                  

(5) 

where   is an dimensional Euclidean space and    

is assumed to be continuously twice differentiable. The gradient 

and Hessian for (5) are denoted as  and , respectively. In order 

to display the updated formula of BFGS, the step-vector, and  

are defined as: 

as: 

                                                                                                
(6) 

                                                   

 
       The search direction  at stage  is given by the solution of 

the analogue of the Newton equation 
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where  is an approximation to the Hessian matrix, which is 

updated iteratively at each stage, and is the gradient of the 

function evaluated at  . A line search  in the direction  is 

then used to find the next point  by minimizing 

over the scalar. 

    The quasi-Newton condition imposed on the update of  is: 

                                                              

(7)                                

Let 

 
and  

 
then  satisfies 

                                                                                 

which is the secant equation. The curvature condition  

should be satisfied. If the function is not strongly convex, then 

the condition has to be enforced explicitly. 

Instead of requiring the full Hessian matrix at the point  to 

be computed as , the approximate Hessian at stage  is 

updated by the addition of two matrices: 

                                                                                       
(8)                                     

Both  and  are symmetric rank-one matrices, but their sum 

is a rank-two update matrix. In order to maintain the symmetry 

and positive definitiveness of , the update form can be 

chosen as: 

                                                                                
(9) 

 Imposing the secant condition,  
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 Choosing  and , we can obtain:  

                                                                                                           

(10) 

                                                                                                        

(11)                                               

Finally, we substitute   and  into   

and get the update equation of     

: 

                                                                            

(12) 

    We have the following optimization algorithm using SQP 

method to build a MATLAB function, for solving the 

equation in (3), the computing procedure of the SQP 

method is descript,    

       From an initial guess  and an approximate Hessian matrix 

 the following steps are repeated as   converges to the 

solution: 

Obtain a direction  by solving 

                                              

  So the linear search  is define by:   

                                                                                          

(13) 

Perform a one-dimensional optimization line search to find an 

acceptable step size  in the direction found in the first step, so  

 
Set   and update the personal best  
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And update the global best as:  

                                                            

The Hessian approximation  using (BFGS) update, 

 
   

                                                                             

(14)                                       

2.2 Algorithm  

Let  be given.  

Start:   

For  : 

Compute: 

1)   

2) ;  

3)  

If   

1) then update;  

                                      i) ; 

                                    ii)  

2) Compute: 

                                       . 

3) Update personal best 

4) For it=1:MaxIt and for i=1:nPop, 

Compute: 

                       i) ; 

                     ii) ; 
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                   iii) ; 

 
                                            

 
Compute 

i) ; 

ii)  

iii)   

 Update personal best 

 

 
                

Update Glob Best 

If  

 

Compute:   

If ; 

then stop. 

2.3 Algorithm Validation and Discussion 

       We formulated function with name of (SQP,m) using matlab 

and  applied it  in some chosen problems with deferent Iterations, 

using the sup Algorithm blow:  

 SQPProblem(i) .m 

clc; 

clear; 

close all; 
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%% Problem Definition  

problem.GradCostFunction = @(x) GCFProb(i)(x);    % Gradient 

of Cost Function 

problem.ConstFunction    = @(x) CFProb(i)(x);     % 

Constrained Function 

problem.nVar=;                 % Number of Unknown (Decision) 

Variables 

problem.VarMin =;                   % Lower Bound of Decision 

Variables 

problem.VarMax =;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = ;        % Maximum Number of Iterations 

params.nPop = ;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP  

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results  

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 
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grid on;  

2.4:The Chosen Problems: 

      In this sub section we applied our algorithm in ten chosen 

problems with deferent Iterations.   

Problem1  

Consider using SQP method to solve the problem   

                                   \ (1)                                                          

Subject to  

                                   (2)                                                

                                                                                (R. Fletcher) 

[11] 

Solution: 

    The unknown decisions are 3, the lower bound is -10 and the 

upper one is 10, the maximum number of iterations is 100, and 

the SQP size is 50. 

 The gradient of constrained Function: 

function g=GCFProb1(x) 

g(1)=-x(2)*x(3); 

g(2)=-x(1)*x(3); 

g(3)=-x(1)*x(2); 

g=g'; 

end 

The Constrained Function: 

function f=CFProb1(x) 

f=72-x(1)-2*x(2)-2*x(3); 

end 

 

SQPProblem1.m:  

clc; 

clear; 
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close all; 

%% Problem Definition  

problem.GradCostFunction = @(x) GCFProb1(x);  

   % Gradient of Cost Function 

problem.ConstFunction    = @(x) CFProb1(x);     

 % Constrained Function 

problem.nVar=3;                      % Number of Unknown 

(Decision) Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem. VarMax =10;                 % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 100;        % Maximum Number of Iterations 

params.nPop =50;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 
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ylabel('Best Cost'); 

grid on; 

 

Problem 2 

Consider using SQP method to solve the problem   

          (3)                                 

 

Subject to  

                       (4)                      

                                         (5) 

                                             (6) 

                                                                      

                                                   (R. Fletcher) [11] 

 

 

 

The Solution: 

    The unknown decisions are 5, the lower bound is -10 and the 

upper one is 10,  the maximum number of iterations is 100, and 

the SQP size is 10. 

The gradient of constrained Function   

function f=GCFPob2(x) 

g=[(x(2)*x(3)*x(4)*x(5))*exp(x(1)*x(2)*x(3)*x(4)*x(5))  

(x(1)*x(3)*x(4)*x(5))*exp(x(1)*x(2)*x(3)*x(4)*x(5)) 

(x(1)*x(2)*x(4)*x(5))*exp(x(1)*x(2)*x(3)*x(4)*x(5)) 

(x(1)*x(2)*x(3)*x(5))*exp(x(1)*x(2)*x(3)*x(4)*x(5)) 

(x(1)*x(2)*x(3)*x(4))*exp(x(1)*x(2)*x(3)*x(4)*x(5))]; 

f=g; 

end 
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The Constrained Function 

function f=CFProb2(x) 

g(1)=x(1)^2+x(2)^2+x(3)^2+x(4)^2+x(5)^2-10; 

g(2)=(x(1)*x(2))-(5*(x(4)*x(5))); 

  g(3)=(x(1)^2+x(2)^2)+1; 

  f=[g(1);g(2);g(3)]; 

end 

 

SQP Problem 2 .m:  

clc; 

clear; 

close all; 

%% Problem Definition 

problem.GradCostFunction = @(x) GCFProb2(x);    % Gradient 

of Cost Function 

problem.ConstFunction = @(x) CFProb2(x);   % Constrained 

Function 

problem.nVar=5;                      % Number of Unknown 

(Decision) Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem. VarMax =10;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 100;        % Maximum Number of Iterations 

params.nPop =10;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 
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BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

 

 

Problem 3 

Consider using SQP method to solve the problem   

                          (7)                                    

Subject to 

                                (8)                             

                                              (9)                                         

                                               (10) 

                                                (11) 

                                                (12) 
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                                                                                         (R. 

Fletcher) [11] 

        

The Solution 

    The unknown decisions are 4, the lower bound is -10 and the 

upper one is 10, the maximum number of iterations is 100, and 

the SQP size is 50. 

The gradient of constrained Function 

function g=GCFProb3(x) 

g=[x(2) 

    x(1) 

    0 

    0]; 

End 

  The Constrained Function 

function f=CFProb3(x) 

g1=((x(1)*x(3)+x(2)*x(4))^2/(x(1)^2+x(2)^2))-x(3)^2-x(4)^2+1; 

g2=x(1)-x(3)-1; 

g3=x(2)-x(4)-1; 

g4=x(3)-x(4); 

g5=x(4)-1; 

f=[g1;g2;g3;g4;g5]; 

end 

SQPProblem3 : 

clc; 

clear; 

close all; 
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%% Problem Definition  

problem.GradCostFunction = @(x) GCFProb3(x);    % Gradent 

of Cost Function 

problem.ConstFunction    = @(x) CFProb3(x);     % Constrained 

Function 

problem.nVar=4;                        % Number of Unknown 

(Decision) Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem.VarMax =10;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 100;        % Maximum Number of Itreations 

params.nPop =50;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP  

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts;  

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 
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grid on; 

Problem 4 

Consider the geometric programming using SQP method to solve 

the problem   

                              (13)                                

                                      (14)                                

                                                      (15)                                           

                                                                                       (R. 

Fetcher) [11] 

The Solution 

    The unknown decisions are 3, the lower bound is -10 and the 

upper one is 10,  the maximum number of iterations is 100, and 

the SQP size is 10. 

The gradient of constrained Function                    

function f=GCFProb4(x) 

g=[-x(1)^-2*x(2)^-1*x(3)^-1 

    -x(1)^-1*x(2)^-2*x(3)^-1 

    -x(1)^-1*x(2)^-1*x(3)^-2]; 

f=g; 

end 

The Constrained Function 

function f=CFProb4(x) 

f=-x(1)-2*x(2)+2*x(3)+72; 

end 

SQPProblem4 .m 

clc; 

clear; 
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close all; 

%% Problem Definition 

problem.GradCostFunction = @(x) GCFProb4(x);    % Gradent 

of Cost Function 

problem.ConstFunction    = @(x) CFProb4(x);     % Constrained 

Function 

problem.nVar=3;                        % Number of Unknown 

(Decision) Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem.VarMax =10;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 100;        % Maximum Number of Itreations 

params.nPop =10;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts;  

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 
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ylabel('Best Cost'); 

grid on; 

Problem 5 

Consider the geometric programming using SQP method to solve 

the problem   

                     (16)                       

Subject to  

                        (17) 

                       

                                                                                      (R. 

Fletcher) [11] 

The Solution: 

The unknown decisions are 3, the lower bound is -1 and the 

upper one is 1, the maximum number of iterations is 100, and the 

SQP size is 50. 

The gradient of constrained Function 

function g=GCFProb5(x) 

g=[40*x(2);40*x(1)+20*x(3);20*x(2)]; 

end 

 

Constrained Function 

function f=CFProb5(x) 

f=1/(5*x(1)*x(2)^(0.5))+3/(5*x(2)*x(3)^(2/3)); 

end 

SQPProblem5 .m 

clc; 

clear; 

close all; 

%% Problem Definition 
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problem.GradCostFunction = @(x) GCFProb5(x);    % Gradent 

of Cost Function 

problem.ConstFunction    = @(x) CFProb5(x);     % Constrained 

Function 

problem.nVar=3;                        % Number of Unknown 

(Decision) Variables 

problem.VarMin =-1;                   % Lower Bound of Decision 

Variables 

problem.VarMax =1;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 100;        % Maximum Number of Itreations 

params.nPop =50;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 
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Problem 6 :Find the optimum to the  using problem  

   (18) 

Subject to  

                  (19)                           
   

                                                                            (Optimization) 

[1] 

The Solution: 

     The unknown decisions are 3, the lower bound is -10 and the 

upper one is 10,  the maximum number of iterations is 100, and 

the SQP size is 50. 

The gradient of constrained Function 

function f=GCFProb6(x) 

g=[4*x(1)^3-4*(x(2)*x(1))+2*x(1) 

    -2*x(1)^2+2*x(2)]; 

f=g; 

end 

Constrained Function 

function f=CFProb6(x) 

f=-(x(1)+0.25)^2+0.75*x(2); 

end 

SQP Problem6 .m 

clc; 

clear; 

close all; 

%% Problem Definition 

 problem.GradCostFunction = @(x) GCFProb6(x);    % Gradent 

of Cost Function 

problem.ConstFunction    = @(x) CFProb6(x);     % Constrained 
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Function 

problem.nVar=2;           .   % Number of Unknown (Decision) 

Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem.VarMax =10;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

params.MaxIt = 50;        % Maximum Number of Itreations 

params.nPop =100;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

Problem 7 

Find the optimum to the using problem  

                      (20)                                
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Subject to  

                             (21)                                                              

                        (R. Fletcher) [11] 

The Solution 

The unknown decisions are 3, the lower bound is -10 and the 

upper one is 10, the maximum number of iterations is 50, and the 

SQP size is 100. 

The gradient of constrained Function 

function f=GCFProb7(x) 

g=[-x(1)^-2*x(2)^-1*x(3)^-1 

    -x(1)^-1*x(2)^-2*x(3)^-1 

    -x(1)^-1*x(2)^-1*x(3)^-2]; 

f=g; 

end 

Constrained Function 

function f=CFProb7(x) 

f=-x(1)-2*x(2)+2*x(3)+72; 

end 

SQPProblem7.m 

clc; 

clear; 

close all; 

%% Problem Definition 

 problem.GradCostFunction = @(x) GCFProb7(x);    % Gradent 

of Cost Function 

problem.ConstFunction    = @(x) CFProb7(x);     % Constrained 

Function 

problem.nVar=3;                  % Number of Unknown (Decision) 

Variables 

problem.VarMin =-10;             % Lower Bound of Decision 
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Variables 

problem.VarMax =10;              % Upper Bound of Decision 

Variables 

%% Parameters of SQP    

params.MaxIt = 100;        % Maximum Number of Itreations 

params.nPop =10;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts;  

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

Problem 8 

Find the optimum to the using problem 

               (22)                                                  

S.t to  

                              (23)                                                  

                                                                                       

(Optimization) [1] 
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The Solution 

      The unknown decisions are 2, the lower bound is -1 and the 

upper one is 1,  the maximum number of iterations is 10, and the 

SQP size is 5. 

The gradient of constrained Function 

 

function g=GCFProb8(x) 

g=[4*x(1) 

    8*x(2)]; 

end 

Constrained Function 

function f=CFProb8(x) 

f=3*x(1)+2*x(2)-12; 

end 

SQPProblem8 .m 

 

clc; 

clear; 

close all; 

%% Problem Definition 

problem.GradCostFunction = @(x) GCFProb8(x);    % Gradient 

of Cost Function 

problem.ConstFunction    = @(x) CFProb8(x);     % Constrained 

Function 

problem.nVar=2;             % Number of Unknown (Decision) 

Variables 

problem.VarMin =-1;                   % Lower Bound of Decision 

Variables 

problem.VarMax =1;                    % Upper Bound of Decision 

Variables 
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%% Parameters of SQP  

params.MaxIt = 10;        % Maximum Number of Iterations 

params.nPop =5;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results 

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on;  

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

 Problem 9 

Find the optimum to the using problem   

             (24)                                          

S.t to  

                     (25)                                                                       

                        (26)             

(Optimization) [1] 

The Solution 

      The unknown decisions are 2, the lower bound is -10 and the 

upper one is 10, the maximum number of iterations is 10, and the 
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SQP size is 50. 

The gradient of constrained Function 

function g=GCFProb9(x) 

g=[2*x(1) 

    2*x(2)]; 

end 

 

Constrained Function 

function f=CFProb9(x) 

g1=-x(1)^2-x(2)^2+9; 

g2=-x(1)-x(2)+1; 

f=[g1;g2]; 

end 

 

SQPProblem9 .m 

clc; 

clear; 

close all; 

%% Problem Definition  

problem.GradCostFunction = @(x) GCFProb9(x);    % Gradient 

of Cost Function 

problem.ConstFunction    = @(x) CFProb9(x);     % Constrained 

Function 

problem.nVar=2;                 % Number of Unknown (Decision) 

Variables 

problem.VarMin =-10;                   % Lower Bound of Decision 

Variables 

problem.VarMax =10;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 
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paams.MaxIt = 10;        % Maximum Number of Iterations 

params.nPop =50;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results  

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

 

Problem 10 

Find the optimum to the using problem   

                         (27)                                          

S.t to  

                      (28)                                                 

                    (29)                                                 

                                                                                      (R. 

Fetcher)[11] 

The Solution 

    The unknown decisions are 3, the lower bound is -1 and the 
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upper one is 1, the maximum number of iterations is 5, and the 

SQP size is 5. 

The gradient of constrained Function 

function g=GCFProb10(x) 

g=[-1 

-1]; 

End 

Constrained Function 

function f=CFProb10(x) 

g1=-x(2) -x(1)^2; 

g2=1-x(1)^2-x(2)^2; 

f=[g1;g2]; 

end 

SQPProblem10 .m 

clc; 

clear; 

close all; 

%% Problem Definition  

problem.GradCostFunction = @(x) GCFProb10(x);    % Gradient 

of Cost Function 

problem.ConstFunction    = @(x) CFProb10(x);     % 

Constrained Function 

problem.nVar=2;                 % Number of Unknown (Decision) 

Variables 

problem.VarMin =-1;                   % Lower Bound of Decision 

Variables 

problem.VarMax =1;                    % Upper Bound of Decision 

Variables 

%% Parameters of SQP 

paams.MaxIt = 5;        % Maximum Number of Iterations 
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params.nPop =5;           % Population Size (SQP Size) 

params.ShowIterInfo = true;  % Flag for Showing Iteration 

information    

%% Calling SQP 

out=SQP(problem, params); 

BestSol=out.BestSol; 

BestCosts=out.BestCosts; 

%% Results  

figure; 

plot(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

figure; 

semilogy(BestCosts, 'LineWidth',2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 

 

3.Conclusion 

 An a Algorithm was developed using the SQP method to build a 

MATLAB function, for solving (3), Computation procedure of 

the SQP method is described and carried out by evaluating the 

gradient of constrained function, defining the constrained 

function of the problem, mentioning the parameters of choosing 

alpha acceptable value in the direction, initializing empty particle 

of the old and new position. Then a flag for showing iteration 

information was drown, a array to hold best cost on each iteration 

and main loop of SQP were built, the best cost value was stored, 

and iteration information was displayed.Algorithm was applied 
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to solve selected problems. 
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