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Abstract: Although the mathematical model of 2D projective singular correlation for relative orientation was
introduced to the photogrammetric community more than fifty years ago, it does not penetrate the deep practice of
analytical and digital photogrammetry. On the other hand, this model is widely accepted and used in the computer
vision community, which is known as the fundamental matrix approach for relative orientation. The attractiveness of
this model stems from two facts. First, it is a linear model. Second, it does not require any prior knowledge about the
camera parameters. In other words, it can handle uncalibrated cameras. This paper offers a fresh look for the use of
2D projective singular correlation in the relative orientation of stereo-pair. Moreover, this paper argues the case for
the use of this model in the daily practice of photogrammetry; and this is through the practical demonstration on rich
data sets. In particular, this paper provides critical evaluations and new insights for this model in terms of its
computational procedures, least-squares random errors modeling, external accuracy checking, and practical issues of
implementation. For example, it presents a general formulation for external accuracy checking that uses the epipolar
distance as a metric for the quality of the solution. This model is tested on three stereo-pairs that were obtained from
handheld video camera, aerial video camera, and scanned aerial photographs. In all tests, subpixel accuracy was
achieved from external checking of the average distances between the epipolar-lines and their corresponding
conjugate points.
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1. INTRODUCTION

Relative orientation of stereo-pair is a fundamental problem in
photogrammetry. It is the mechanism behind 3D visualization
of stereo-pairs; 3D point coordinates computation in the
model-space; and the reduction of the search space for image
matching; and this is through the epipolar-line geometry [1].
Computationally, the relative orientation of a stereo-pair can
be accomplished by the knowledge of five conjugate points,
which will lead to the determination of five parameters. These
parameters could be a combination of rotation angles from the
stereo-pair (independent relative orientation) or a combination
of rotation angles and translation parameters of a single image
and holding the parameters of the other image fixed
(dependent relative orientation). Mathematically, the relative
orientation problem can be solved through the collinearity
model or the coplanarity condition equation or model. Both
models are non-linear and require initial approximations for
their unknown parameters. The coplanarity model is superior
to the collinearity model in terms of eliminating the need for
initial approximations for the 3D point coordinates in the
model-space. In other words, the 3D point coordinates in the
model-space are not part of the unknown parameters in the

coplanarity model. Approximate linear models for the relative
orientation can be obtained for near-vertical images by
rearrangement of the collinearity model [2]. In general, the
problem of relative orientation is considered solved; and
therefore it received little attention in  modern
photogrammetric literature. Yes, it is solved for the aerial
photographic mapping, but this is not the case for close range
photogrammetric applications. The main debate here refers to
the practical issue of the non-linearity of the photogrammetric
models and the difficulties associated with obtaining the
values of initial approximation for the configurations of
images in close range applications. In aerial mapping, this
non-linearity was solved by near-vertical image configuration
and later by GPS-INS (GPS stands for Global Positioning
System and INS stands for Inertial Navigation System)
integration. On the other hand, this non-linearity remains to be
an issue in close-range applications, which will dominate the
practice of photogrammetry in the near future [3]. Moreover,
new digital sensors such as video cameras require flexible and
generic models for image orientation; otherwise the tapped
values in their images cannot be easily exploited. Therefore,
the issue of non-linearity should receive more attention to
push the photogrammetric practice into new fronts.
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The 2D projective singular correlation or relative linear
transform was introduced to the photogrammetric community
in 1959 by Thompson [4]. Nevertheless, it does not penetrate
the deep practice of analytical and digital photogrammetry.
This is may be explained by the following reasons.
Historically, optical-mechanical stereo-plotting instruments
were used to measure photo-coordinates, trace contour lines,
and draw planimetric maps. Those instruments were large,
expensive, bulky, and required well trained personnel. Let us
put this reasoning or argument in a more general context.
Prior to the availability of digital imaging and computer
software, performing such tasks as image coordinates
measurement was not easily accessible a wider community of
general users. Clearly, the basis of computational or analytical
photogrammetry methods, such as 2D projective singular
correlation or the fundamental matrix, lie in the acceptance
and dominance of digital sensor technologies for image
acquisition and the availability of easy to develop software for
image processing and implementation of photogrammetric
algorithms. By now, digital technology is the mainstream in
the photogrammetric  development and applications.
Nevertheless, modern textbooks of photogrammetry slightly
touch the relative orientation through the fundamental matrix
[2-5]. On the other hand, the fifth edition of the manual of
photogrammetry provides a thorough explanation and analysis
for the fundamental matrix and its application to relative
orientation [6]. However, there is an objection against the use
of the fundamental matrix for relative orientation [7,8]. This
objection is mainly due to the inability of the fundamental
matrix approach to estimate the parameters of the relative
orientation from coplanar points. It is argued in this paper that
there is a wide range of applications in which the coplanar
points can be avoided and this objection should not hampered
or restrict the usefulness of the fundamental matrix for relative
orientation. In fact, a similar argument was held against the
Direct Linear Transformation (DLT) since it cannot handle
coplanar points, but a remedy to this problem was found [9].
The underlying ideas of the fundamental matrix were
introduced to the computer vision communities by Longuet-
Higgins in 1981 [10]. And since then this approach for
relative orientation was subjected to intensive and extensive
research, which was addressed in several textbooks [11-13].

The attractiveness of 2D projective singular correlation or the
fundamental matrix approach stems from two main facts.
First, it is a linear model. Indeed, there are non-linear versions
of this model that were proposed to improve its accuracy [11],
but this non-linearity is not an issue since there are good
methods that can be used to obtain the initial approximations.
As is well known, the non-linearity of the photogrammetric
orientation procedures is one of the major issues that slow the
acceptance of photogrammetry as a generic measurement
technology [3]. Second, it does not require any prior
knowledge of the camera calibration parameters or the interior
orientation of the metric camera. In other words, it can handle
uncalibrated cameras and cameras with unknown interior
orientation parameters such as video images and scanned
aerial photographs with unknown or missing camera
calibration certificate.

This paper offers a fresh look for the use of 2D projective
singular correlation in the relative orientation of stereo-pair.
Moreover, it argues the case for the use of this model in the
daily practice of photogrammetry; and this is through the
practical demonstration on rich data sets. In particular, this
paper provides critical evaluations for this model in terms of
its computational procedures, least-squares random errors
modeling, external accuracy checking, and practical issues of
implementation such as the representation of the image
coordinates. This model is tested on three stereo-pairs that
were obtained from handheld video camera, aerial video
camera, and scanned aerial photographs.

This paper is organized as follows. The next section provides
the geometric principles and the mathematical formulation of
the fundamental matrix and its direct connection with the
classical  representation of relative orientation in
photogrammetry using the coplanarity model. Then followed
by the data sets and results and analysis sections. The last
section concludes the paper.

2. GEOMETRIC PRINCIPLES AND MATHEMATICAL
FORMULATION

This section presents the geometric principles and the
mathematical formulation of the 2D projective singular
correlation or the fundamental matrix. In particular, it exploits
the direct connection between the fundamental matrix and the
classical  representation of relative orientation in
photogrammetry using the coplanarity model.

Fig.1 shows the geometry of relative orientation between two
images. Suppose that a point A in the 3D object space is
imaged in two images and at two locations a in the left image
and a’ in the right image. The pair (a, a’) defines conjugate
points. As shown in Fig. 1, the conjugate points, the object
space point A, and the camera centers (C1, C2) are coplanar.
Mathematically, this relationship is the basis of the
coplanarity model; and it can be defined by the following
equation:

_b).(glxgz)zo )

where:

5

b is the vector between by C1 and C2. This vector is called
the baseline vector.

-

a1: js the vector that connects the image point a and the
camera perspective center in the left image.

-

a2: js the vector that connects the image point a’ and the
camera perspective center in the right image.
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Fig. 1. Geometric principles of coplanarity condition equation.
[1] Before delving further, let us define the geometric entities
of the relative orientation as illustrated in Fig. 1: %=, 10 -x 7% X,
- The epipole is the point of intersection of the line & =R, =Y, [=R;|0 1 —y, |y, |=RKlY,
joining the two camera centers, (C1, C2), with the —f 00 —-fJ1 1
image plane. e and e’ are the epipoles of the left and K (4)

right image respectively (see Fig. 1).

- An epipolar plane is a plane containing the baseline.
For example, point A and the two camera centers (C1,
C2) are defining an epipolar plane (see Fig. 1).

- Anepipolar line is the intersection of an epipolar plane
with the image plane. All epipolar lines intersect at the
epipole. u and u’ (red lines in the left and right images
in Fig. 1 are epipolar lines.

By using matrix notation, the content of the vectors shown in
equation (1) can be written explicitly as follows:

b,
b=|b,
b, )
I Rt 10 =X, % X,
a=R|y-y,[=R/|0 1 -y, |y |=RK|y
—f 00 —f1 1
| ——
K (3)

where:

K: is known as the calibration matrix.

f: is the focal length of the camera.

xp and yp: are the coordinates of the principal point of the
camera.

R1 and R2: are the rotation matrices for the left and the right
image shown in Fig. 1.

x1, y1: image coordinates in the left image.

X2,y2: image coordinates in the right image.

By inserting equations (2), (3), and (4) in equation (1) and
after rearrangement, we get the coplanarity condition equation
or model:

0 b, -b, X,
[x, v, JRKT|-b, 0 b, |RIK|y,|=0
b, -b, 0 1 ©)

Now, we are at the position to define the singular correlation
matrix for the 2D projective transformation or the
fundamental matrix F as follows:

0 b, -b f, f, f,
F=RK'|-b, 0 b [RJK=|f, f, f,
b, b, 0| f, f, f

=0 (6)
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Notice that the b matrix is a skew-symmetric matrix since its

determinant is equal to zero and b" =—b [14]. In fact,
equation (6) provides an analytical proof for equation (1). This
property (skew-symmetric) of the b matrix will induce the
rank or the singularity constraint, which will be defined and
exploited in equation (14). In light of equation (6), equation
(5) can be written compactly as follows:

X, fl fz fs X,
[Xl Y1 1]F Y, :[X1 Y1 1 f4 f5 fe Y, =0
1 f,of, |1

O

Therefore, equation (7) is another way to parameterize the
coplanarity condition equation or the epipolar constraint. This
constraint is encoded by the 3 x 3 matrix F. This
parameterization brings new properties for equation (6) that
will be discussed in the sequel of this section. Equation (7) is
a homogenous equation and is typically scaled by setting one

of its unknown equal to 1 (here: f9 =1 ). More importantly,
equation (7) is linear relationship for the coplanarity condition
equation or the epipolar constraint. Terms-wise, the
observation equation of this relationship can be written as
follows:

XXy B+ Xo Yy By + X B3 + Yo Xy 4 + Y5 Yy s + Y5 f +
X f; +yfe=-1+¢

(8)
where: (X0 Yai) and (Xai, i) are the image coordinates
for a conjugate point.

SR 2 Ty . are the unknown elements (parameters) of
the F matrix.

& . is the random error associated with each observation
equation. Geometrically, this error can be interpreted as a
distance between the epipolar-line and one of the conjugate
points in one of the images from the stereo-pair.

Each conjugate point will generate one observation equation.
Geometrically, each observation equation will generate one
epipolar constraint. Therefore, a minimum of 8 conjugate
points are required to solve equation (8). Equation (8) is
typically called the eight-point algorithm [15]. For best
results, the image coordinates in a stereo-pair are normalized
to avoid the problem of large numbers during the inversion of
the F matrix. Large numbers in the F matrix will be induced
by the bilinear coefficients of equation (8). Accordingly, two
normalization procedures were used and tested in this paper.
In the first one, the image coordinates are reduced to the
physical center of the image or the sensor of the camera. In
the second one, the image coordinates are reduced to the
location of their statistical average.

More than 8 points are typically treated by a least-squares
solution to handle the inconsistency of the observations and to
estimate the most probable values of the unknowns. The
following target function is minimized to find the optimal
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solution for the unknown parameters of the fundamental
matrix F:

e"Pe+ 2] (A& —7—e) =min(e, &, 4,)
where:

€ is the vector of the random errors associated with the
observation equations.

Pisa weight matrix.

©)

/11: A vector of Lagrange multipliers for the epipolar
constraint.

A is the coefficient or the design matrix of the unknown
parameters shown in equation (8).

S . is the vector of the unknown parameters shown in
equation (8).

T+ A vector of constant values and each value is equal to -1.
The solution of the target function shown in equation (9) will
lead to the following set of equations:

£=(ATPA)*ATPr

(10)
D{é} = 0-02 (AT PA) * (11)
e=7—-A¢ (12)
T
*? e Pe
Oo =
n-r (13)
where:

n

5: Are the estimated unknown parameters of the F matrix
shown in equation (8).

I:){f}: Dispersion matrix of the unknown parameters.

€. A vector of the predicted residuals.
N 2

Oo: The estimated variance component.

N : Number of observation equation.

I': Number of unknown parameters (here: 8 parameters).

As shown in equation (6), a real non-zero 3 x 3 matrix F is a
fundamental matrix if it satisfies the following constraint:

det(F) =|F|=0 14)

Equation (14) states that the determinant of F should equal to
zero, which was shown in equation (6). This is also known as
the rank constraint for the fundamental matrix. As stated, this
is a direct consequence of the skew symmetric matrix shown
in equation (6). Terms-wise the rank constraint can be written
as follows:

¢="H(fs—fofe) - f(f - foFr) + fy(f, f - £ f,) =0 (15)
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The rank constraint shown in equation (15) is imposed on
equation (8); and this is after its linearization. Indeed, this
constraint will lead to a non-linear least squares estimation
solution that requires Taylor’s series expansion and initial
approximations. Therefore, the target function shown in
equation (9) will be modified to include the rank or the
singularity constraint as a fixed-constraint during the
minimization process as follows:

e’ Pe+24] (AAE —Ar—e) + 24, (HAE — Ax,) =
min(e,A&, 4, 4,)

where:

(16)

Ag . is the correction vector for the unknown parameters of
the fundamental matrix F.

}'l: is the vector of Lagrange multiplier for the epipolar
constraint.

/12: is the vector of the Lagrange multipliers for the rank
constraint.

AT - is the vector of discrepancies of the epipolar constraints.

H - is a row vector for the partial derivatives of equation (15).
Ax

0 is the vector of discrepancy for the rank constraint

equation.

The provision of initial values or approximations for the non-
linear solution shown in equation (16) is not an issue since
very good approximations can be obtained by the linear
solution shown in equations (8) and (9).

Tsai and Huang [16] proposed another approach to enforce the
rank constraint. This approach replaces the matrix F found by
equation (8) by a singular matrix F’. This new matrix
minimizes the Frobenius norm ||F-F’|. This step can be
implemented by using a singular value decomposition and
setting the smallest eigen value to zero as follows:

F=UAVT (17)
o 0 0
A=0 o, O
0 0 o (18)
where:

U and V are 3 x 3 orthogonal matrices.

A - is a diagonal matrix of the eigen values.

0,20,20,2>0 . .
1 2 3 - are the ordered eigen values from higher

. (o .
to lower. The smallest eigen (~ 2) value is set to zero and the
new matrix is:

16

o, 0 O
F=U0 o, OV’
0 0 O

(19)

In general, the 2D projective singular correlation or the
fundamental matrix can be formulated as a two-step solution:
- Linear solution using equation (8).

- Constraint enforcement, which is a non-linear solution.

After estimating the elements of the fundamental matrix F, the
following quantities can be derived:

- The left and right epipolar lines.

- The left and right epipoles.

- The distances between the left and right epipolar lines
and the two coordinate of the conjugate points in the left
and right images or a stereo-pair.

- The root-mean-square-errors (rmse) of the check points.

The general equation of the epipolar line is:

Where a, b, and c are the parameters of the straight line shown
in equation (20). For a stereo-pair, each conjugate point will
generate 2 epipolar lines. One line in the right image and
another one in the left image.

The parameters (a, b, ¢) of the right epipolar lines (ELright)
for a specific conjugate point are:

&y Xy
ELright = bll = FT yll
C, 1

i 21

Similarly, the parameters (a, b, ¢) of the left epipolar lines
(ELIeft) for a specific conjugate point are:

ay; X5i
ELi =| by |=F| Yy
C,i 1

(22)
el
left epipole ("®"), which is the left null-space of the F matrix,
can be computed as follows:

e F =6 UAV' =0 23)

T
€ et -
left s the column of U that corresponds to the zero elements

of the eigen values.

The right epipole (e”gh‘), which is the right null-space of the
F matrix, can be computed as follows:

Fe right: UAV ! eright = O (24)
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€
elements of the eigen values.

right 1S the column of V' that corresponds to the zero

The signed distance (d;) between the epipolar line in the right
image and its conjugate point in the same image is:

Xli

Yai 1]FT Yii
1

d; = [XZi

(25)

Similar relationship can be written for the left image. In ideal
image coordinates measurement, (di) should equal to zero, but
this is not the case since random noise and the lack of camera
calibration will make the (di) values deviate from zero.
Equation (25) will be part of a measure for external accuracy
checking in the sense of root-mean-square errors (rmse). In
particular, some of the conjugate points will not be used for
estimation of the unknown parameters of the fundamental
matrix (let us call them check points); and those points will be
substituted into equation (25) to compute the rmse values.
Specifically, the equation of the external accuracy checking is:

(24)
where: N is the number of check points.

Geometrically, equation (26) represents the average distance
between the epipolar lines and the conjugate points, which are
also, can be interpreted as the rmse for the check points. It is
very important to stress that equation (26) provide a common
ground to compare the performance of the F matrix under
different normalizations and formulations.

In light of equations (9), (16), (19), and (1), the following two

key facts can be deduced:

- The linear solution of the fundamental matrix, shown in
equation (9), minimizes the distance between the
epipolar lines and the conjugate points. In other words, it
is an image-based constraint and it does not include the
model-space information, shown in equation (1), to the
solution.

- The rank constraint solution of the fundamental matrix,
shown in equation (16) or (19), minimizes the distance
between the epipolar lines and the conjugate points as
well as the constraint shown in equation (1), which is a
model-space constraint for 3D point intersection. In other
words, this solution minimizes simultaneously the image
space information and the model-space information
shown in equation (1). Therefore, this solution captures
the implicit error of 3D point reconstruction or
intersection in the model space.

Therefore, the mathematical construct of the target
functions shown in equations (9) and (16) gave a very

clear picture for the above deduction and an interesting
insight of the constraint and unconstraint solutions.

3. DATA SETS

Three stereo-pairs were used in this study. In all pairs, no
camera parameters were utilized. In particular, the following
data sets were used:

- A stereo-pair from a handheld video camera (see Fig. 2).
Twenty two (22) conjugate points were measured in this
pair (see Fig. 3); and four of them were reserved as
check points.

- A stereo-pair from an aerial video camera (see Fig. 4).
Twenty two (22) conjugate points were measured in this
pair (see Fig. 5) ; and four of them were reserved as
check points.

- A stereo-pair from an aerial film-based camera (see Fig.
6). This pair is scanned at a resolution of 400 dots per
inch (400 dpi). Twenty six (26) conjugate points were
measured in this pair (see Fig. 7) ); and four of them
were reserved as check points.

Left image Rightimage

Fig. 2. A stereo-pair from a handheld video camera (an image
of a plastic ball).

Left image

Rightimage

Fig. 3. Conjugate points from the stereo-pair of the handheld
video camera.
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Left image Rightimage

Fig. 4. Stereo-pair from an aerial video camera.

Left image Rightimage

Fig. 5. Conjugate points from the stereo-pair of the aerial video camera.

Left Image Right Image
Fig. 6. Stereo-pair from scanned aerial photographs
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Left Image

Right Image

Fig. 7. Conjugate points from the stereo-pair of the scanned aerial photographs.

4. RESULTS AND DISCUSSION

MATLAB-based prototype software was developed to
implement the presented work in this paper. For each stereo-
pair listed in the data sets section, the following types of
experiment were conducted:

Linear estimation of the fundamental matrix (F1) using
equation (9). The image coordinates are normalized by
reduction to the physical center of the image. This
experiment will be called case no. 1.

Non-linear estimation of the fundamental matrix (F2)
using equation (16). The image coordinates are
normalized by reduction to the physical center of the
image. This experiment will be called case no. 2.
Estimation of the fundamental matrix (F3) using
Frobenius norm shown in equation (19). The image
coordinates are normalized by reduction to the physical

center of the image. This experiment will be called case
no. 3.

Estimation of the fundamental matrix (F4) using
Frobenius norm using equation (19), but the image
coordinates are normalized by reduction to the statistical
average of the image coordinates. This experiment will
be called case no. 4.

In all cases, four (4) conjugate points were reserved for
external accuracy checking in the form of rmse.

Table 1 shows the image coordinates of the conjugate points
(22 points) that were measured from the stereo-pair shown
in Fig. 2 (handheld video images). The locations of these
conjugate points were shown in Fig. 3. These coordinates
were measured with the left upper corner of the image as an
origin. This origin was transformed or normalized; and this
is in accordance to the specifications of the four cases listed
before.

Table 1: Coordinates for the left and right images from the handheld video camera.

Point X1 V1 Xo 2 Point X1 V1 Xo Yo
ID (pixels) (pixels) (pixels)  (pixels) ID (pixels) (pixels) (pixels) (pixels)
1 36 310 69 435 12 507 394 553 352
2 97 339 147 438 13 117 451 180 549
3 183 361 241 431 14 188 465 258 532
4 272 361 334 396 15 273 465 348 502
5 358 348 415 351 16 355 451 425 459
6 62 205 86 315 17 435 432 495 409
7 133 229 169 317 18 447 547 515 520
8 223 245 267 295 19 514 509 571 460
9 309 237 350 261 20 573 470 616 402
10 390 218 423 215 21 507 294 543 252
11 439 321 483 297 22 569 357 599 295
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The fundamental matrices of the four cases for the stereo-pair
that was obtained from the handheld camera are listed below.
The first two fundamental matrices (F; and F,) that were
estimated from the linear solution of the fundamental matrix
shown in equation (9) and the constrained one depicted by
equation (16) are identical. On the other hand, there are some
changes in the elements of the third fundamental matrix (Fs),
which was obtained by the singular value decomposition. For
example, F3(2,2) is less than the corresponding elements in F;
and F, by an order of magnitude. The fourth fundamental
matrix (F4) is completely different from the other three ones in
terms of the numerical values since it uses a different
normalization procedure for the image coordinates.

[ -8.1538e-006 -3.9317e-006 -0.020961]
F,=| 24277e-006 -3.0736e-006 0.0025608
| 0.018953 -0.0057545 1 |
[-8.1538e-006 -3.9317e-006 -0.020961 |
F,=| 2.4277e-006 -3.0736e-006 0.0025608
| 0.018953 -0.0057545 1 ]
[-8.0511e-006  -3.6097e-006 -0.020961 ]
F,=| 3.3122e-006 -3.0225e-007 0.0025608
| 0.018953 -0.0057545 1

-2.3196e-005  -2.1702e-005 -0.090445
F, =| 2.5329e-005 4.2155e-006 -0.0048565
0.08546 0.017492 1

Table 2 shows the derived information from the four (4)
fundamental matrices of the handheld video images. From this
Table, the following observations can be made:

- The left and right coordinates of the epipoles for the first

three cases are identical. On the other hand, these
coordinates are different for the fourth case and this is
due to the use of different normalization procedure for
the image coordinates.

~

2
The variance components <o  of the first three cases

are less by an order of magnitude than the fourth case.
This will suggest that the normalization of the image
coordinates by the physical center of the image is better
than the normalization by the reduction to the statistical
average of the image coordinates.

The rmse for the first two cases are identical and this is
can be explained by the equality of their fundamental
matrices. In other words, the determinant constraint does
not change the values of the elements of fundamental
matrix for the second case.

The rmse for the third case is bigger by an order of
magnitude than the first two cases. In other words, the
Frobenius norm increases the rmse. More precisely, there
are intersection inaccuracies or errors that were brought
implicitly by conjugate points; and this inaccuracy is
captured by the increase in the rmse.

The rmse of the fourth case is bigger than the three
previous cases. This large value can be explained by two
arguments. First, there is intersection inaccuracy.
Second, there is a bias that was introduced by the
normalization procedure of the image coordinates (here:
reduction to the statistical average of the image
coordinates).

Regardless of the normalization procedures, sub-pixel
accuracy was achieved in all cases. In other words, the
rmse for the four cases is less than one pixel (check the
second column in Table 2).

Table 3 shows the image coordinates of the conjugate points
(22 points) that were measured from the stereo-pair shown
in Fig. 4 (aerial video images). The locations of these
conjugate points were shown in Fig. 5. These coordinates
were measured with the left upper corner of the image as an
origin. This origin was transformed or normalized; and this
is in accordance to the specifications of the four cases listed
before.

Table 2: The derived information from the four fundamental matrices for the handheld video images

Case rmse ", Left epipole Right epipole

no. (pixels) o (pxels®) (pixels) (pixels)

1 0.0761 0.000498 [0.11541 0.99332 -0.0001245 [-0.30406 -0.95265 0.000280g"
2 0brel 0.000442 [0.11541 0.99332-0.0001248"  [-0.30406 -0.95265 0.000280g
3 0.13069 0.000498 [0.11541 0.99332-0.0001245  [-0.30406 -0.95265 0.000280¢"
4 0.40453 0.00869 [0.057051 -0.99837 0.0003113d"  [-0.19845 0.98011-0.0001842"
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Table 3: Coordinates for the left and right images from the aerial video camera.

Point X1 V1 Xo 2 Point X1 V1 Xo )
ID (pixels) (pixels) (pixels)  (pixels) ID (pixels) (pixels) (pixels) (pixels)
1 1000 372 903 494 12 1370 612 1294 810
2 1212 478 1124 634 13 1228 616 1127 811
3 1478 612 1414 815 14 1550 688 1490 909
4 751 481 603 623 15 1429 789 1345 1036
5 1066 787 922 1028 16 1341 741 1245 975
6 1025 127 954 199 17 1111 762 977 995
7 1619 310 1593 425 18 1069 721 938 941
8 1448 171 1414 258 19 1235 784 1116 1034
9 958 77 799 1019 20 1055 677 924 879
10 578 640 398 818 21 1059 270 978 368
11 1619 655 1571 874 22 1301 191 1253 279

The four fundamental matrices for the stereo-pair that were
obtained from the aerial camera and for the four cases are
listed below. The first three fundamental matrices (F1, F2, and
F3) that were obtained from the linear solution of the
fundamental matrix shown in equation (9), the constrained
one depicted by equation (16), and Frobenius norm solution
that was obtained from equation (19) respectively are not
exactly identical, but they are very close to each other. The
fourth fundamental matrix (F4) is completely different from
the other three ones in terms of the numerical values since it
uses a different normalization procedure for the image
coordinates.

-2.8865e-007  1.0465e-005 0.00041448
F, =[-9.2257¢-006  -5.2757e-007 0.0057605
-0.0018254 -0.0061675 1
-2.7836e-007 1.0465e-005 0.00041448
F, =]-9.2295e-006 -5.2743e-007  0.0057605
-0.0018254 -0.0061675 1
-2.7836e-007  1.0465e-005 0.00041448
F, =| -9.2295e-006  -5.2743e-007  0.0057605
-0.0018254 -0.0061675 1
2.3034e-006 0.00020352 0.056695
F,=| -0.00018535  4.4502e-006 0.079801
-0.067425 -0.097294 1

Table 4 shows the derived information from the fundamental
matrix for the aerial video images. From this Table the
following observations can be made:

- The left and right coordinates of the epipoles for the first
three cases are identical. On the other hand, these
coordinates are different for the fourth case and this is

due to the use of different normalization procedure for
the image coordinates.

~

- The variance components < S of the first three cases
are less by an order of magnitude than the fourth case.
This suggests that the normalization of the image
coordinates by the physical center of the image is better
than the normalization by the reduction to the statistical
average of the image coordinates.

- The rmse for the first two cases are identical and this is
can be explained by the equality of their fundamental
matrices. In other words, the determinant constraint does
not change the values of the elements of fundamental
matrix for the second case.

- The rmse for the third case is slightly bigger than the
first two cases. In other words, the Frobenius norm made
a minor change in the rmse value. More precisely, there
are slight intersection inaccuracies that could be induced
by errors in the conjugate points identification; and this
inaccuracy is captured by the slight increase in the rmse.

- The rmse of the fourth case is bigger than the three
previous cases. This large value can be explained, once
again, by two arguments. First, there is intersection
inaccuracy, which is very slight as shown in the previous
analysis. Second, there is a little bit large bias that was
introduced by the normalization procedure of the image
coordinates normalization procedure (here: reduction to
the statistical average of the image coordinates).

- Regardless of the normalization procedures, sub-pixel
accuracy was achieved in all cases. In other words, the
rmse for the four cases is less than one pixel (check the
second column in Table 4).

Table 5 shows the image coordinates of the conjugate points
(26 points) that were measured from the stereo-pair shown in
Fig. 6 (scanned aerial images). The locations of these
conjugate points were shown in Fig. 7. These coordinates
were measured with the left upper corner of the image as an
origin. This origin was transformed or normalized; and this in
accordance to the specifications of the four cases listed before.
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Table 4: The derived information from the four fundamental matrices for the aerial video images

Case Rmse GAZ o, Left epipole Right epipole
no. (pixels) o (pixels®) (pixels) (Pixels)
1 0.01917 0.000238  [-0.93724 0.34867 -0.001620]  [0.99932 -0.036702 0.001597g
2 0.01917 0.000212  [-0.93724 0.34867 -0.0016207 [0.99932 -0.036702 0.001597g
3 0.01938 0.000238  [-0.93724 0.34867 -0.0016207 [0.99932 -0.036702 0.001597¢
4 0.21768 0.30615 [0.80528 -0.59289 0.001657F [-0.83125 0.5559 -0.0019617"
Table 5: Coordinates for the left and right images from the scanned aerial images.
Point X1 V1 Xo Yo Point ID X1 V1 Xo Yo
ID (pixels) (pixels) (pixels) (pixels) (pixels) (pixels) (pixels) (pixels)
1 905 423 1607 373 14 942 1918 1568 1870
2 1135 469 1838 441 15 1055 1918 1679 1877
3 1149 564 1846 541 16 1175 1646 1813 1622
4 1201 990 1872 978 17 1169 1567 1808 1546
5 1167 1124 1837 1112 18 666 1050 1335 994
6 905 1197 1572 1153 19 473 938 1140 865
7 1034 1360 1690 1333 20 598 819 1274 754
8 553 1406 1207 1343 21 742 605 1431 546
9 509 1513 1157 1446 22 468 368 1166 272
10 543 1628 1189 1562 23 263 393 949 278
11 437 1820 1073 1742 24 318 570 998 470
12 649 1805 1286 1742 25 236 613 910 508
13 696 1898 1329 1834 26 263 1712 900 1624
) ) -1.4375e-005 -0.00017148 -0.039252
The four fundamental matrices for the stereo-pair that was F,=| 0.0001691 -1.046e-005 -0.092587
obtained from the scanned aerial images and for the four cases
0.045349 0.091438 1

are listed below. The first three fundamental matrices (F1, F2,
and F3) that were obtained from the linear solution of the
fundamental matrix shown in equation (9), the constrained
one depicted by equation (16), and Frobenius norm solution
that was obtained from equation (19) respectively are not
exactly identical, but they are very close to each other. The
fourth fundamental matrix (F4) is completely different from
the other three ones in terms of the numerical values since it
uses a different normalization procedure for the image
coordinates.

[7.9133e-008 -1.6195e-006 -0.0015142
F, =|1.6667e-006 7.5003e-008 0.00019774
| 0.0014498 0.00094755 1
[7.9133e-008 -1.6195e-006 -0.0015142
F, =11.6667e-006 7.5003e-008 0.00019774
10.0014498 0.00094755 1
[7.9122e-008  -1.6196e-006  -0.0015142
F, =|1.6667e-006 7.5206e-008 0.00019774
10.0014498 0.00094755 1
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Table 6 shows the derived information from the fundamental
matrix for the scanned aerial images. From this Table the
following observations can be made:

- The left and right coordinates of the epipoles for the first

three cases are identical. On the other hand, these
coordinates are different for the fourth case and this is
due to the normalization procedure of the image
coordinates.

~

2
- The variance components < o of the first three cases are

less by four orders of magnitude than the fourth case. This
will suggest that the normalization of the image
coordinates by the physical center of the image is far better
than the normalization of the image coordinates by the
reduction to the statistical average of the image
coordinates. Therefore, proper normalization for the image
coordinates is very critical for aerial images.

- The rmse for the first two cases are identical and this is
can be explained by the equality of their fundamental
matrices. In other words, the determinant constraint does
not change the values of the elements of fundamental
matrix for the second case.
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Table 6: The derived information from the fundamental matrix for the scanned aerial images

No. Rmse (pixels) (;5 (pixel) Left epipole (pixels) Right epipole (pixels)

! 0.020279 5.8065e-006 [-0.51875 0.85493-0.00095454"  [-0.081005 -0.99671 0.0010619'
2 0.020279 5.3598e-006 [-0.51875 0.85493-0.00095454"  [-0.081005 -0.99671 0.0010619'
3 0.020216 5.8065¢-006 [-0.51875 0.85493-0.00095454  [-0.081005 -0.99671 0.0010619'
4 0.36374 0.0378

[0.92713 -0.37475 0.0016949"

[0.88846 -0.45895 0.0016752

- The rmse for the third case is slightly bigger than the first
two cases. In other words, the Frobenius norm made a
minor change in the rmse value. More precisely, there are
slight intersection inaccuracies that were induced by errors
in conjugate points identification; and this inaccuracy is
captured by the slight increase in the rmse.

- The rmse of the fourth case is bigger than the three
previous cases. This large value can be explained, once
again, by two arguments. First, there is intersection
inaccuracy, which is very slight as shown in the previous
analysis. Second, there is a little bit large bias that was
introduced by the normalization procedure of the image
coordinates (here: reduction to the statistical average of the
image coordinates).

- Regardless of the normalization procedures, sub-pixel
accuracy was achieved in all cases. In other words, the
rmse for the four cases is less than one pixel (check the
second column in Table 6).

In all experiments, the first three cases produce identical

epipole coordinates. The epipole coordinates for the fourth

case are different and this is due to the use of different
normalization procedure for the image coordinates (see the

last two columns in Tables 2, 4, and 6).

5. CONCLUSIONS

This paper offers a fresh look for the use of 2D projective
singular correlation in the relative orientation of stereo-pair.
Moreover, this paper argues the case for the use of this model
in the daily practice of photogrammetry; and this is through
the practical demonstration on rich data sets. In particular, this
paper provides critical evaluations for this model in terms of
its computational procedures, least-squares random errors
modeling, external accuracy checking, and practical issues of
implementation. This model is tested on three stereo-pairs that
were obtained from handheld video camera, aerial video
camera, and scanned aerial photographs. In all tests, subpixel
accuracy was obtained from external checking of the average
distances between the epipolar-lines and their conjugate
points.

This paper presents a general or universal formulation for
external accuracy checking that uses the epipolar distance.
The formulation is invariant to the constraint or unconstraint
solutions as well as the chosen normalization procedure.

The mathematical construct of the target functions, used in
this research, reveals that the rank constraint solution
minimizes simultaneously the image space information as
well as model-space information. Practical experiments
demonstrate that this solution captures the implicit error of 3D
point reconstruction or intersection in the model space. This
error is induced by the incorrect identification of the conjugate
points in the image space.
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It is not clear why the determinant does not impose the rank
constraint as did by the singular value decomposition. Future
work should investigate this issue.

Indeed, future work should extend this work to automatic
relative orientation as well as 3D point reconstruction in the
model and object spaces. Moreover, it should investigate the
issue of the use of coplanar points in the 2D projective
singularity correlation or the fundamental matrix.
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