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Abstract: Although the mathematical model of 2D projective singular correlation for relative orientation was 

introduced to the photogrammetric community more than fifty years ago, it does not penetrate the deep practice of 

analytical and digital photogrammetry. On the other hand, this model is widely accepted and used in the computer 

vision community, which is known as the fundamental matrix approach for relative orientation. The attractiveness of 

this model stems from two facts. First, it is a linear model. Second, it does not require any prior knowledge about the 

camera parameters. In other words, it can handle uncalibrated cameras. This paper offers a fresh look for the use of 

2D projective singular correlation in the relative orientation of stereo-pair. Moreover, this paper argues the case for 

the use of this model in the daily practice of photogrammetry; and this is through the practical demonstration on rich 

data sets. In particular, this paper provides critical evaluations and new insights for this model in terms of its 

computational procedures, least-squares random errors modeling, external accuracy checking, and practical issues of 

implementation. For example, it presents a general formulation for external accuracy checking that uses the epipolar 

distance as a metric for the quality of the solution. This model is tested on three stereo-pairs that were obtained from 

handheld video camera, aerial video camera, and scanned aerial photographs. In all tests, subpixel accuracy was 

achieved from external checking of the average distances between the epipolar-lines and their corresponding 

conjugate points. 
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

1. INTRODUCTION 

 

Relative orientation of stereo-pair is a fundamental problem in 

photogrammetry. It is the mechanism behind 3D visualization 

of stereo-pairs; 3D point coordinates computation in the 

model-space; and the reduction of the search space for image 

matching; and this is through the epipolar-line geometry [1].  

Computationally, the relative orientation of a stereo-pair can 

be accomplished by the knowledge of five conjugate points, 

which will lead to the determination of five parameters. These 

parameters could be a combination of rotation angles from the 

stereo-pair (independent relative orientation) or a combination 

of rotation angles and translation parameters of a single image 

and holding the parameters of the other image fixed 

(dependent relative orientation). Mathematically, the relative 

orientation problem can be solved through the collinearity 

model or the coplanarity condition equation or model. Both 

models are non-linear and require initial approximations for 

their unknown parameters. The coplanarity model is superior 

to the collinearity model in terms of eliminating the need for 

initial approximations for the 3D point coordinates in the 

model-space. In other words, the 3D point coordinates in the 

model-space are not part of the unknown parameters in the 

coplanarity model. Approximate linear models for the relative 

orientation can be obtained for near-vertical images by 

rearrangement of the collinearity model [2]. In general, the 

problem of relative orientation is considered solved; and 

therefore it received little attention in modern 

photogrammetric literature. Yes, it is solved for the aerial 

photographic mapping, but this is not the case for close range 

photogrammetric applications. The main debate here refers to 

the practical issue of the non-linearity of the photogrammetric 

models and the difficulties associated with obtaining the 

values of initial approximation for the configurations of 

images in close range applications. In aerial mapping, this 

non-linearity was solved by near-vertical image configuration 

and later by GPS-INS (GPS stands for Global Positioning 

System and INS stands for Inertial Navigation System) 

integration. On the other hand, this non-linearity remains to be 

an issue in close-range applications, which will dominate the 

practice of photogrammetry in the near future [3]. Moreover, 

new digital sensors such as video cameras require flexible and 

generic models for image orientation; otherwise the tapped 

values in their images cannot be easily exploited. Therefore, 

the issue of non-linearity should receive more attention to 

push the photogrammetric practice into new fronts.  
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The 2D projective singular correlation or relative linear 

transform was introduced to the photogrammetric community 

in 1959 by Thompson [4]. Nevertheless, it does not penetrate 

the deep practice of analytical and digital photogrammetry. 

This is may be explained by the following reasons. 

Historically, optical-mechanical stereo-plotting instruments 

were used to measure photo-coordinates, trace contour lines, 

and draw planimetric maps. Those instruments were large, 

expensive, bulky, and required well trained personnel. Let us 

put this reasoning or argument in a more general context. 

Prior to the availability of digital imaging and computer 

software, performing such tasks as image coordinates 

measurement was not easily accessible a wider community of 

general users. Clearly, the basis of computational or analytical 

photogrammetry methods, such as 2D projective singular 

correlation or the fundamental matrix, lie in the acceptance 

and dominance of digital sensor technologies for image 

acquisition and the availability of easy to develop software for 

image processing and implementation of photogrammetric 

algorithms. By now, digital technology is the mainstream in 

the photogrammetric development and applications. 

Nevertheless, modern textbooks of photogrammetry slightly 

touch the relative orientation through the fundamental matrix 

[2-5]. On the other hand, the fifth edition of the manual of 

photogrammetry provides a thorough explanation and analysis 

for the fundamental matrix and its application to relative 

orientation [6]. However, there is an objection against the use 

of the fundamental matrix for relative orientation [7,8]. This 

objection is mainly due to the inability of the fundamental 

matrix approach to estimate the parameters of the relative 

orientation from coplanar points. It is argued in this paper that 

there is a wide range of applications in which the coplanar 

points can be avoided and this objection should not hampered 

or restrict the usefulness of the fundamental matrix for relative 

orientation.  In fact, a similar argument was held against the 

Direct Linear Transformation (DLT) since it cannot handle 

coplanar points, but a remedy to this problem was found [9]. 

The underlying ideas of the fundamental matrix were 

introduced to the computer vision communities by Longuet-

Higgins in 1981 [10]. And since then this approach for 

relative orientation was subjected to intensive and extensive 

research, which was addressed in several textbooks [11-13]. 

 

The attractiveness of 2D projective singular correlation or the 

fundamental matrix approach stems from two main facts. 

First, it is a linear model. Indeed, there are non-linear versions 

of this model that were proposed to improve its accuracy [11], 

but this non-linearity is not an issue since there are good 

methods that can be used to obtain the initial approximations. 

As is well known, the non-linearity of the photogrammetric 

orientation procedures is one of the major issues that slow the 

acceptance of photogrammetry as a generic measurement 

technology [3]. Second, it does not require any prior 

knowledge of the camera calibration parameters or the interior 

orientation of the metric camera. In other words, it can handle 

uncalibrated cameras and cameras with unknown interior 

orientation parameters such as video images and scanned 

aerial photographs with unknown or missing camera 

calibration certificate.  

This paper offers a fresh look for the use of 2D projective 

singular correlation in the relative orientation of stereo-pair. 

Moreover, it argues the case for the use of this model in the 

daily practice of photogrammetry; and this is through the 

practical demonstration on rich data sets. In particular, this 

paper provides critical evaluations for this model in terms of 

its computational procedures, least-squares random errors 

modeling, external accuracy checking, and practical issues of 

implementation such as the representation of the image 

coordinates. This model is tested on three stereo-pairs that 

were obtained from handheld video camera, aerial video 

camera, and scanned aerial photographs. 

 

This paper is organized as follows. The next section provides 

the geometric principles and the mathematical formulation of 

the fundamental matrix and its direct connection with the 

classical representation of relative orientation in 

photogrammetry using the coplanarity model. Then followed 

by the data sets and results and analysis sections. The last 

section concludes the paper. 

 

2. GEOMETRIC PRINCIPLES AND MATHEMATICAL 

FORMULATION 
 

This section presents the geometric principles and the 

mathematical formulation of the 2D projective singular 

correlation or the fundamental matrix. In particular, it exploits 

the direct connection between the fundamental matrix and the 

classical representation of relative orientation in 

photogrammetry using the coplanarity model. 

 

 Fig.1 shows the geometry of relative orientation between two 

images. Suppose that a point A in the 3D object space is 

imaged in two images and at two locations a in the left image 

and a’ in the right image. The pair (a, a’) defines conjugate 

points.  As shown in Fig. 1, the conjugate points, the object 

space point A, and the camera centers (C1, C2) are coplanar. 

Mathematically, this relationship is the basis of the 

coplanarity model; and it can be defined by the following 

equation: 

 

0).( 21 


aab                                                      (1) 

 

where: 


b : is the vector between by C1 and C2. This vector is called 

the baseline vector.   

1



a : is the vector that connects the image point a  and the 

camera perspective center in the left image. 

2



a : is the vector that connects the image point a’ and the 

camera perspective center in the right image. 
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Fig. 1. Geometric principles of coplanarity condition equation. 

 

 

[1] Before delving further, let us define the geometric entities 

of the relative orientation as illustrated in Fig. 1: 

 

- The epipole is the point of intersection of the line 

joining the two camera centers, (C1, C2), with the 

image plane. e and e’ are the epipoles of the left and 

right image respectively (see Fig. 1). 

- An epipolar plane is a plane containing the baseline. 

For example, point A and the two camera centers (C1, 

C2) are defining an epipolar plane (see Fig. 1). 

- An epipolar line is the intersection of an epipolar plane 

with the image plane. All epipolar lines intersect at the 

epipole. u and u’ (red lines in the left and right images 

in Fig. 1 are epipolar lines. 

By using matrix notation, the content of the vectors shown in 

equation (1) can be written explicitly as follows: 
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where: 
 

K: is known as the calibration matrix.  

f: is the focal length of the camera. 

xp and yp: are the coordinates of the principal point of the 

camera.  

R1 and R2: are the rotation matrices for the left and the right 

image shown in Fig. 1. 

x1, y1: image coordinates in the left image. 

x2,y2: image coordinates in the right image. 

By inserting equations (2), (3), and (4) in equation (1) and 

after rearrangement, we get the coplanarity condition equation 

or model: 
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Now, we are at the position to define the singular correlation 

matrix for the 2D projective transformation or the 

fundamental matrix F as follows: 
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Notice that the b matrix is a skew-symmetric matrix since its 

determinant is equal to zero and bbT   [14]. In fact, 

equation (6) provides an analytical proof for equation (1). This 

property (skew-symmetric) of the b matrix will induce the 

rank or the singularity constraint, which will be defined and 

exploited in equation (14). In light of equation (6), equation 

(5) can be written compactly as follows: 
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Therefore, equation (7) is another way to parameterize the 

coplanarity condition equation or the epipolar constraint. This 

constraint is encoded by the 3 x 3 matrix F. This 

parameterization brings new properties for equation (6) that 

will be discussed in the sequel of this section. Equation (7) is 

a homogenous equation and is typically scaled by setting one 

of its unknown equal to 1 (here:
19 f

 ). More importantly, 

equation (7) is linear relationship for the coplanarity condition 

equation or the epipolar constraint. Terms-wise, the 

observation equation of this relationship can be written as 

follows: 

 

iii

iiiiiiiiii
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                                                                                             (8) 

 

where: 
),( 11 ii yx

 and 
),( 22 ii yx

 are the image coordinates 

for a conjugate point. 

 81 .,,......... ff
 : are the unknown elements (parameters) of 

the F matrix. 

ie
: is the random error associated with each observation 

equation. Geometrically, this error can be interpreted as a 

distance between the epipolar-line and one of the conjugate 

points in one of the images from the stereo-pair. 

Each conjugate point will generate one observation equation. 

Geometrically, each observation equation will generate one 

epipolar constraint. Therefore, a minimum of 8 conjugate 

points are required to solve equation (8). Equation (8) is 

typically called the eight-point algorithm [15]. For best 

results, the image coordinates in a stereo-pair are normalized 

to avoid the problem of large numbers during the inversion of 

the F matrix. Large numbers in the F matrix will be induced 

by the bilinear coefficients of equation (8). Accordingly, two 

normalization procedures were used and tested in this paper. 

In the first one, the image coordinates are reduced to the 

physical center of the image or the sensor of the camera. In 

the second one, the image coordinates are reduced to the 

location of their statistical average.  

More than 8 points are typically treated by a least-squares 

solution to handle the inconsistency of the observations and to 

estimate the most probable values of the unknowns. The 

following target function is minimized to find the optimal 

solution for the unknown parameters of the fundamental 

matrix F: 

 

),,min()(2 11  eeAPee TT                      (9)
 

where:  
e  is the vector of the random errors associated with the 

observation equations. 

P : is a weight matrix. 

1 : A vector of Lagrange multipliers for the epipolar 

constraint. 

A : is the coefficient or the design matrix of the unknown 

parameters shown in equation (8). 


: is the vector of the unknown parameters shown in 

equation (8). 
 : A vector of constant values and each value is equal to -1. 

The solution of the target function shown in equation (9) will 

lead to the following set of equations: 
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where: 

 

^


: Are the estimated unknown parameters of the F matrix 

shown in equation (8). 

}{
^

D
: Dispersion matrix of the unknown parameters. 

~

e : A vector of the predicted residuals. 
2^

o : The estimated variance component. 
n : Number of observation equation. 
r : Number of unknown parameters (here: 8 parameters). 

As shown in equation (6), a real non-zero 3 x 3 matrix F is a 

fundamental matrix if it satisfies the following constraint: 

 

0)det(  FF
                                                           (14) 

 

Equation (14) states that the determinant of F should equal to 

zero, which was shown in equation (6). This is also known as 

the rank constraint for the fundamental matrix.  As stated, this 

is a direct consequence of the skew symmetric matrix shown 

in equation (6). Terms-wise the rank constraint can be written 

as follows: 

0)()()( 7584376428651  fffffffffffff
 (15)
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The rank constraint shown in equation (15) is imposed on 

equation (8); and this is after its linearization. Indeed, this 

constraint will lead to a non-linear least squares estimation 

solution that requires Taylor’s series expansion and initial 

approximations. Therefore, the target function shown in 

equation (9) will be modified to include the rank or the 

singularity constraint as a fixed-constraint during the 

minimization process as follows:  
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                                                                                           (16) 

where:  


: is the correction vector for the unknown parameters of 

the fundamental matrix F. 

1 : is the vector of Lagrange multiplier for the epipolar 

constraint. 

2 : is the vector of the Lagrange multipliers for the rank 

constraint. 

 : is the vector of discrepancies of the epipolar constraints. 

H : is a row vector for the partial derivatives of equation (15). 

o : is the vector of discrepancy for the rank constraint 

equation. 

 

The provision of initial values or approximations for the non-

linear solution shown in equation (16) is not an issue since 

very good approximations can be obtained by the linear 

solution shown in equations (8) and (9). 

 

Tsai and Huang [16] proposed another approach to enforce the 

rank constraint. This approach replaces the matrix F found by 

equation (8) by a singular matrix F’. This new matrix 

minimizes the Frobenius norm ||F-F’||. This step can be 

implemented by using a singular value decomposition and 

setting the smallest eigen value to zero as follows: 

 
TVUF                                                                      (17) 
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where: 

 U and V are 3 x 3 orthogonal matrices. 

 : is a diagonal matrix of the eigen values. 

0321  
: are the ordered eigen values from higher 

to lower. The smallest eigen ( 3
) value is set to zero and the 

new matrix is: 
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In general, the 2D projective singular correlation or the 

fundamental matrix can be formulated as a two-step solution: 

- Linear solution using equation (8). 

- Constraint enforcement, which is a non-linear solution. 

After estimating the elements of the fundamental matrix F, the 

following quantities can be derived: 

- The left and right epipolar lines. 

- The left and right epipoles. 

- The distances between the left and right epipolar lines 

and the two coordinate of the conjugate points in the left 

and right images or a stereo-pair. 

- The root-mean-square-errors (rmse) of the check points. 

The general equation of the epipolar line is: 
 

0 cbyax                                                          (20) 

 

Where a, b, and c are the parameters of the straight line shown 

in equation (20). For a stereo-pair, each conjugate point will 

generate 2 epipolar lines. One line in the right image and 

another one in the left image.  

The parameters (a, b, c) of the right epipolar lines (ELright) 

for a specific conjugate point are: 
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Similarly, the parameters (a, b, c) of the left epipolar lines 

(ELleft) for a specific conjugate point are: 
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left epipole (

T

lefte
), which is the left null-space of the F matrix, 

can be computed as follows: 

 

0 TT

left

T

left VUeFe
                                             (23) 

 
T

lefte
 is the column of U that corresponds to the zero elements 

of the eigen values. 

The right epipole ( righte
), which is the right null-space of the 

F matrix, can be computed as follows: 

 

0 right

T

right eVUFe
                                           (24) 
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righte  is the column of V that corresponds to the zero 

elements of the eigen values. 

 

The signed distance (di) between the epipolar line in the right 

image and its conjugate point in the same image is: 
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Similar relationship can be written for the left image. In ideal 

image coordinates measurement, (di) should equal to zero, but 

this is not the case since random noise and the lack of camera 

calibration will make the (di) values deviate from zero. 

Equation (25) will be part of a measure for external accuracy 

checking in the sense of root-mean-square errors (rmse). In 

particular, some of the conjugate points will not be used for 

estimation of the unknown parameters of the fundamental 

matrix (let us call them check points); and those points will be 

substituted into equation (25) to compute the rmse values. 

Specifically, the equation of the external accuracy checking is: 

 

N

d
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i
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                                                     (24) 

 
where:  N is the number of check points. 

 

Geometrically, equation (26) represents the average distance 

between the epipolar lines and the conjugate points, which are 

also, can be interpreted as the rmse for the check points. It is 

very important to stress that equation (26) provide a common 

ground to compare the performance of the F matrix under 

different normalizations and formulations. 

In light of equations (9), (16), (19), and (1), the following two 

key facts can be deduced: 

- The linear solution of the fundamental matrix, shown in 

equation (9), minimizes the distance between the 

epipolar lines and the conjugate points. In other words, it 

is an image-based constraint and it does not include the 

model-space information, shown in equation (1), to the 

solution. 

- The rank constraint solution of the fundamental matrix, 

shown in equation (16) or (19), minimizes the distance 

between the epipolar lines and the conjugate points as 

well as the constraint shown in equation (1), which is a 

model-space constraint for 3D point intersection. In other 

words, this solution minimizes simultaneously the image 

space information and the model-space information 

shown in equation (1). Therefore, this solution captures 

the implicit error of 3D point reconstruction or 

intersection in the model space. 

Therefore, the mathematical construct of the target 

functions shown in equations (9) and (16) gave a very 

clear picture for the above deduction and an interesting 

insight of the constraint and unconstraint solutions. 

 

3. DATA SETS 

 
Three stereo-pairs were used in this study. In all pairs, no 

camera parameters were utilized. In particular, the following 

data sets were used: 

- A stereo-pair from a handheld video camera (see Fig. 2). 

Twenty two (22) conjugate points were measured in this 

pair (see Fig. 3); and four of them were reserved as 

check points. 

 

- A stereo-pair from an aerial video camera (see Fig. 4). 

Twenty two (22) conjugate points were measured in this 

pair (see Fig. 5) ; and four of them were reserved as 

check points. 

 

- A stereo-pair from an aerial film-based camera (see Fig. 

6). This pair is scanned at a resolution of 400 dots per 

inch (400 dpi). Twenty six (26) conjugate points were 

measured in this pair (see Fig. 7) ); and four of them 

were reserved as check points. 

 

 

Fig. 2. A stereo-pair from a handheld video camera (an image 

of a plastic ball). 

 

 

Fig. 3. Conjugate points from the stereo-pair of the handheld 

video camera. 
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Fig. 4. Stereo-pair from an aerial video camera. 

 

 
Fig. 5. Conjugate points from the stereo-pair of the aerial video camera. 

 

 

 

Fig. 6. Stereo-pair from scanned aerial photographs 
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Fig. 7. Conjugate points from the stereo-pair of the scanned aerial photographs. 

 

 

 

 

4. RESULTS AND DISCUSSION 

 
MATLAB-based prototype software was developed to 

implement the presented work in this paper. For each stereo-

pair listed in the data sets section, the following types of 

experiment were conducted: 

- Linear estimation of the fundamental matrix (F1) using 

equation (9). The image coordinates are normalized by 

reduction to the physical center of the image. This 

experiment will be called case no. 1. 

- Non-linear estimation of the fundamental matrix (F2) 

using equation (16). The image coordinates are 

normalized by reduction to the physical center of the 

image. This experiment will be called case no. 2. 

- Estimation of the fundamental matrix (F3) using 

Frobenius norm shown in equation (19). The image 

coordinates are normalized by reduction to the physical 

center of the image. This experiment will be called case 

no. 3. 

- Estimation of the fundamental matrix (F4) using 

Frobenius norm using equation (19), but the image 

coordinates are normalized by reduction to the statistical 

average of the image coordinates. This experiment will 

be called case no. 4. 

- In all cases, four (4) conjugate points were reserved for 

external accuracy checking in the form of rmse. 

Table 1 shows the image coordinates of the conjugate points 

(22 points) that were measured from the stereo-pair shown 

in Fig. 2 (handheld video images). The locations of these 

conjugate points were shown in Fig. 3. These coordinates 

were measured with the left upper corner of the image as an 

origin. This origin was transformed or normalized; and this 

is in accordance to the specifications of the four cases listed 

before. 

 

       Table 1: Coordinates for the left and right images from the handheld video camera. 

Point 

ID 

x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

Point 

ID 

x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

1 36 310 69 435 12 507 394 553 352 

2 97 339 147 438 13 117 451 180 549 

3 183 361 241 431 14 188 465 258 532 

4 272 361 334 396 15 273 465 348 502 

5 358 348 415 351 16 355 451 425 459 

6 62 205 86 315 17 435 432 495 409 

7 133 229 169 317 18 447 547 515 520 

8 223 245 267 295 19 514 509 571 460 

9 309 237 350 261 20 573 470 616 402 

10 390 218 423 215 21 507 294 543 252 

11 439 321 483 297 22 569 357 599 295 
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The fundamental matrices of the four cases for the stereo-pair 

that was obtained from the handheld camera are listed below. 

The first two fundamental matrices (F1 and F2) that were 

estimated from the linear solution of the fundamental matrix 

shown in equation (9) and the constrained one depicted by 

equation (16) are identical. On the other hand, there are some 

changes in the elements of the third fundamental matrix (F3), 

which was obtained by the singular value decomposition. For 

example, F3(2,2) is less than the corresponding elements in F1 

and F2 by an order of magnitude. The fourth fundamental 

matrix (F4) is completely different from the other three ones in 

terms of the numerical values since it uses a different 

normalization procedure for the image coordinates. 

 



















1              0.0057545-           0.018953  

0.0025608      006-3.0736e-     006-2.4277e  

0.020961-    006-3.9317e-     006-8.1538e- 

1F

 



















1            0.0057545-            0.018953 

0.0025608      006-3.0736e-     006-2.4277e  

0.020961-    006-3.9317e-      006-8.1538e-

2F

 
 



















1              0.0057545-            0.018953 

0.0025608      007-3.0225e-      006-3.3122e  

0.020961-    006-3.6097e-       006-8.0511e-

3F

 
 



















1                  0.017492               0.08546 

0.0048565-    006-4.2155e        005-2.5329e 

0.090445-    005-2.1702e-       005-2.3196e-

4F

 

 
Table 2 shows the derived information from the four (4) 

fundamental matrices of the handheld video images. From this 

Table, the following observations can be made: 

- The left and right coordinates of the epipoles for the first 

three cases are identical. On the other hand, these 

coordinates are different for the fourth case and this is 

due to the use of different normalization procedure for 

the image coordinates. 

- The variance components  

^
2

o  of the first three cases 

are less by an order of magnitude than the fourth case. 

This will suggest that the normalization of the image 

coordinates by the physical center of the image is better 

than the normalization by the reduction to the statistical 

average of the image coordinates. 

- The rmse for the first two cases are identical and this is 

can be explained by the equality of their fundamental 

matrices. In other words, the determinant constraint does 

not change the values of the elements of fundamental 

matrix for the second case. 

- The rmse for the third case is bigger by an order of 

magnitude than the first two cases. In other words, the 

Frobenius norm increases the rmse. More precisely, there 

are intersection inaccuracies or errors that were brought 

implicitly by conjugate points; and this inaccuracy is 

captured by the increase in the rmse. 

- The rmse of the fourth case is bigger than the three 

previous cases. This large value can be explained by two 

arguments. First, there is intersection inaccuracy. 

Second, there is a bias that was introduced by the 

normalization procedure of the image coordinates (here: 

reduction to the statistical average of the image 

coordinates). 

- Regardless of the normalization procedures, sub-pixel 

accuracy was achieved in all cases. In other words, the 

rmse for the four cases is less than one pixel (check the 

second column in Table 2). 

 

Table 3 shows the image coordinates of the conjugate points 

(22 points) that were measured from the stereo-pair shown 

in Fig. 4 (aerial video images). The locations of these 

conjugate points were shown in Fig. 5. These coordinates 

were measured with the left upper corner of the image as an 

origin. This origin was transformed or normalized; and this 

is in accordance to the specifications of the four cases listed 

before. 

 

 

    Table 2: The derived information from the four fundamental matrices for the handheld video images 

Case 

no. 

rmse 

(pixels) 

^
2

o (pxels2)
 Left epipole 

(pixels) 

Right epipole 

(pixels) 

1 0.0761 0.000498  T0.0001245-  0.99332  0.11541   T0.0002808   0.95265-   0.30406-  

2 0.0761 0.000442  T0.0001245-  0.99332    0.11541   T0.0002808   0.95265-   0.30406-  

3 0.13069 0.000498  T0.0001245-  0.99332    0.11541   T0.0002808   0.95265-   0.30406-  

4 0.40453 0.00869  T0.00031138   0.99837-     0.057051   T0.00018428-  0.98011      0.19845-  
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        Table 3: Coordinates for the left and right images from the aerial video camera. 

Point 

ID 

x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

Point 

ID 

x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

1 1000 372 903 494 12 1370 612 1294 810 

2 1212 478 1124 634 13 1228 616 1127 811 

3 1478 612 1414 815 14 1550 688 1490 909 

4 751 481 603 623 15 1429 789 1345 1036 

5 1066 787 922 1028 16 1341 741 1245 975 

6 1025 127 954 199 17 1111 762 977 995 

7 1619 310 1593 425 18 1069 721 938 941 

8 1448 171 1414 258 19 1235 784 1116 1034 

9 958 777 799 1019 20 1055 677 924 879 

10 578 640 398 818 21 1059 270 978 368 

11 1619 655 1571 874 22 1301 191 1253 279 

 

The four fundamental matrices for the stereo-pair that were 

obtained from the aerial camera and for the four cases are 

listed below. The first three fundamental matrices (F1, F2, and 

F3) that were obtained from the linear solution of the 

fundamental matrix shown in equation (9), the constrained 

one depicted by equation (16), and Frobenius norm solution 

that was obtained from equation (19) respectively are not 

exactly identical, but they are very close to each other. The 

fourth fundamental matrix (F4) is completely different from 

the other three ones in terms of the numerical values since it 

uses a different normalization procedure for the image 

coordinates. 

 



















1                0.0061675-           0.0018254-

0.0057605      007-5.2757e-       006-9.2257e-

0.00041448        005-1.0465e       007-2.8865e-

1F

 

 



















1               0.0061675-           0.0018254- 

0.0057605      007-5.2743e-        006-9.2295e-

0.00041448        005-1.0465e        007-2.7836e-

2F

 

 



















1                 0.0061675-           0.0018254- 

0.0057605       007-5.2743e-       006-9.2295e- 

0.00041448          005-1.0465e       007-2.7836e-

3F

 

 



















1                   0.097294-           0.067425- 

0.079801          006-4.4502e        0.00018535- 

0.056695            0.00020352         006-2.3034e

4F

 
 

Table 4 shows the derived information from the fundamental 

matrix for the aerial video images. From this Table the 

following observations can be made: 

 

- The left and right coordinates of the epipoles for the first 

three cases are identical. On the other hand, these 

coordinates are different for the fourth case and this is 

due to the use of different normalization procedure for 

the image coordinates. 

- The variance components 

^
2

o of the first three cases 

are less by an order of magnitude than the fourth case. 

This suggests that the normalization of the image 

coordinates by the physical center of the image is better 

than the normalization by the reduction to the statistical 

average of the image coordinates. 

- The rmse for the first two cases are identical and this is 

can be explained by the equality of their fundamental 

matrices. In other words, the determinant constraint does 

not change the values of the elements of fundamental 

matrix for the second case. 

-  

- The rmse for the third case is slightly bigger than the 

first two cases. In other words, the Frobenius norm made 

a minor change in the rmse value. More precisely, there 

are slight intersection inaccuracies that could be induced 

by errors in the conjugate points identification; and this 

inaccuracy is captured by the slight increase in the rmse. 

-  

- The rmse of the fourth case is bigger than the three 

previous cases. This large value can be explained, once 

again, by two arguments. First, there is intersection 

inaccuracy, which is very slight as shown in the previous 

analysis. Second, there is a little bit large bias that was 

introduced by the normalization procedure of the image 

coordinates normalization procedure (here: reduction to 

the statistical average of the image coordinates). 

 

- Regardless of the normalization procedures, sub-pixel 

accuracy was achieved in all cases. In other words, the 

rmse for the four cases is less than one pixel (check the 

second column in Table 4). 

 

Table 5 shows the image coordinates of the conjugate points 

(26 points) that were measured from the stereo-pair shown in 

Fig. 6 (scanned aerial images). The locations of these 

conjugate points were shown in Fig. 7. These coordinates 

were measured with the left upper corner of the image as an 

origin. This origin was transformed or normalized; and this in 

accordance to the specifications of the four cases listed before. 
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  Table 4: The derived information from the four fundamental matrices for the aerial video images 

Case 

no. 

Rmse 

(pixels) 

^
2

o (pixels
2
) 

Left epipole 

(pixels) 

Right epipole 

(Pixels) 

1 0.01917 0.000238  T0.0016201-   0.34867      0.93724-

 

 T0.0015978    0.036702-    0.99932  

2 0.01917 0.000212  T0.0016201-   0.34867      0.93724-

 

 T0.0015978    0.036702-    0.99932  

3 0.01938 0.000238  T0.0016201-   0.34867      0.93724-

 

 T0.0015978    0.036702-    0.99932  

4 0.21768 0.30615  T0.0016573    0.59289-     0.80528   T0.0019617-   0.5559       0.83125-  
 

Table 5: Coordinates for the left and right images from the scanned aerial images. 

Point 

ID 

x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

Point ID x1 

(pixels) 

y1 

(pixels) 

x2 

(pixels) 

y2 

(pixels) 

1 905 423 1607 373 14 942 1918 1568 1870 

2 1135 469 1838 441 15 1055 1918 1679 1877 

3 1149 564 1846 541 16 1175 1646 1813 1622 

4 1201 990 1872 978 17 1169 1567 1808 1546 

5 1167 1124 1837 1112 18 666 1050 1335 994 

6 905 1197 1572 1153 19 473 938 1140 865 

7 1034 1360 1690 1333 20 598 819 1274 754 

8 553 1406 1207 1343 21 742 605 1431 546 

9 509 1513 1157 1446 22 468 368 1166 272 

10 543 1628 1189 1562 23 263 393 949 278 

11 437 1820 1073 1742 24 318 570 998 470 

12 649 1805 1286 1742 25 236 613 910 508 

13 696 1898 1329 1834 26 263 1712 900 1624 

 

 

The four fundamental matrices for the stereo-pair that was 

obtained from the scanned aerial images and for the four cases 

are listed below. The first three fundamental matrices (F1, F2,  

and F3) that were obtained from the linear solution of the 

fundamental matrix shown in equation (9), the constrained 

one depicted by equation (16), and Frobenius norm solution 

that was obtained from equation (19) respectively  are not 

exactly identical, but they are very close to each other. The 

fourth fundamental matrix (F4) is completely different from 

the other three ones in terms of the numerical values since it 

uses a different normalization procedure for the image 

coordinates. 

 



















1                0.00094755          0.0014498 

0.00019774       008-7.5003e      006-1.6667e

0.0015142-     006-1.6195e-    008-7.9133e

1F

 



















1                0.00094755             0.0014498

0.00019774        008-7.5003e        006-1.6667e

0.0015142-      006-1.6195e-      008-7.9133e

2F

 



















1                   0.00094755             0.0014498

0.00019774         008-7.5206e         006-1.6667e

0.0015142-       006-1.6196e-       008-7.9122e

3F

 
 



















1                    0.091438                0.045349  

0.092587-          005-1.046e-            0.0001691  

0.039252-         0.00017148-        005-1.4375e-

4F

 
 

Table 6 shows the derived information from the fundamental 

matrix for the scanned aerial images. From this Table the 

following observations can be made: 

- The left and right coordinates of the epipoles for the first 

three cases are identical. On the other hand, these 

coordinates are different for the fourth case and this is 

due to the normalization procedure of the image 

coordinates. 

- The variance components 

^
2

o of the first three cases are 

less by four orders of magnitude than the fourth case. This 

will suggest that the normalization of the image 

coordinates by the physical center of the image is far better 

than the normalization of the image coordinates by the 

reduction to the statistical average of the image 

coordinates. Therefore, proper normalization for the image 

coordinates is very critical for aerial images. 

- The rmse for the first two cases are identical and this is 

can be explained by the equality of their fundamental 

matrices. In other words, the determinant constraint does 

not change the values of the elements of fundamental 

matrix for the second case. 
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Table 6: The derived information from the fundamental matrix for the scanned aerial images 

No. Rmse (pixels)  ^
2

o (pixel
2
) 

Left epipole (pixels) Right epipole (pixels) 

1 0.020279 5.8065e-006  T0.00095454-  0.85493      0.51875-   T0.0010619    0.99671-     0.081005-  
2 0.020279 5.3598e-006  T0.00095454-  0.85493      0.51875-   T0.0010619    0.99671-     0.081005-  
3 0.020216 5.8065e-006  T0.00095454-  0.85493      0.51875-   T0.0010619    0.99671-     0.081005-  
4 0.36374 0.0378  T0.0016949    0.37475-     0.92713   T0.0016752    0.45895-     0.88846  

 

- The rmse for the third case is slightly bigger than the first 

two cases. In other words, the Frobenius norm made a 

minor change in the rmse value. More precisely, there are 

slight intersection inaccuracies that were induced by errors 

in conjugate points identification; and this inaccuracy is 

captured by the slight increase in the rmse. 

- The rmse of the fourth case is bigger than the three 

previous cases. This large value can be explained, once 

again, by two arguments. First, there is intersection 

inaccuracy, which is very slight as shown in the previous 

analysis. Second, there is a little bit large bias that was 

introduced by the normalization procedure of the image 

coordinates (here: reduction to the statistical average of the 

image coordinates). 

- Regardless of the normalization procedures, sub-pixel 

accuracy was achieved in all cases. In other words, the 

rmse for the four cases is less than one pixel (check the 

second column in Table 6). 

In all experiments, the first three cases produce identical 

epipole coordinates. The epipole coordinates for the fourth 

case are different and this is due to the use of different 

normalization procedure for the image coordinates (see the 

last two columns in Tables 2, 4, and 6). 
 

5. CONCLUSIONS 
 

This paper offers a fresh look for the use of 2D projective 

singular correlation in the relative orientation of stereo-pair. 

Moreover, this paper argues the case for the use of this model 

in the daily practice of photogrammetry; and this is through 

the practical demonstration on rich data sets. In particular, this 

paper provides critical evaluations for this model in terms of 

its computational procedures, least-squares random errors 

modeling, external accuracy checking, and practical issues of 

implementation. This model is tested on three stereo-pairs that 

were obtained from handheld video camera, aerial video 

camera, and scanned aerial photographs. In all tests, subpixel 

accuracy was obtained from external checking of the average 

distances between the epipolar-lines and their conjugate 

points. 
 

This paper presents a general or universal formulation for 

external accuracy checking that uses the epipolar distance. 

The formulation is invariant to the constraint or unconstraint 

solutions as well as the chosen normalization procedure.  

The mathematical construct of the target functions, used in 

this research, reveals that the rank constraint solution 

minimizes simultaneously the image space information as 

well as model-space information. Practical experiments 

demonstrate that this solution captures the implicit error of 3D 

point reconstruction or intersection in the model space. This 

error is induced by the incorrect identification of the conjugate 

points in the image space. 

It is not clear why the determinant does not impose the rank 

constraint as did by the singular value decomposition. Future 

work should investigate this issue. 

Indeed, future work should extend this work to automatic 

relative orientation as well as 3D point reconstruction in the 

model and object spaces. Moreover, it should investigate the 

issue of the use of coplanar points in the 2D projective 

singularity correlation or the fundamental matrix. 
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