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Abstract: The motion of particles such as spheres immersed in fluids represents an idealization of various industrial
processes. Such as, sedimentation and fluidized suspensions, lubricated transport, or general unit operation processes.
The motion of spheres falling through static fluids was studied. The objective was to study the different flow patterns
and to predict the terminal falling velocity and drag coefficient of particles settling in Newtonian and non-Newtonian
(shear-thinning) fluids. The velocity of a falling sphere was measured as a function of time and sphere density.
Particles of different sizes and densities, beside different types of fluids such as engine oil, glycerine, and kerosene
representing non-Newtonian (shear-thinning)] were used. Derived experimental data for solid spheres falling through
Newtonian and non-Newtonian fluids were reported, using fluid properties and hydrostatics bench apparatus.
Empirical equations were formulated and developed for predicting drag coefficient and terminal falling velocity of

solid spheres falling through stagnant fluids.

Keywords: Hydrodynamics; Drags; Particle motion; Solid sphere; Terminal velocity.

1. INTRODUCTION

The hydrodynamic properties of particles motions are very
important in  numerous industrial applications. These
properties (viscosity, size, shape, density, etc) affect particle
motions on fluids.[1] The fluid dynamic drag on a sphere and
the terminal settling velocity of a single spherical particle in
static fluid are of interest in numerous fields such as unit
operation processes. The practical application without
complicating features; may be suitable for study of particles
motions. The free terminal velocity is a fundamental
engineering parameter which must be determined in order to
predict the hydrodynamic behaviour of particles within a flow.
The flow past a sphere in a confined region is encountered in
various applications such as falling ball viscometer,
hydrodynamic chromatography, membrane transport, and
hydraulic transport of coarse solids in pipes.[2] Furthermore,
numerous fluids of industrial importance display shear-
thinning characteristics which are conveniently approximated
by the simple power law models, some of these non-
Newtonian fluids are; polymer melts, polymer solutions, food
emulsions, suspensions and biological fluids [3].

The objective of this work is to collect experimental data of
falling particles of different sizes and densities. Different
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types of Newtonian and Non-Newtonian fluids were used as
media for free particle falling. It is intended also, to improve
the well known published correlations for drag and terminal
settling velocity that have been in use, based on the collected
data and other data obtained from many previous
investigations. The behaviour of a particle undergoing
acceleration or retardation has been the subject of a very large
number of investigators. The results obtained by different
workers were not consistent. It is although shown that the drag
factor is often related, not only to the Reynolds number, but
also to the particle diameters, the distance travelled by the
particle since the initiation of the motion, the hydrodynamic
equations which control the motion of particle in fluid [4].

2. MATERIALS AND METHODS

Data has been collected for the falling velocities of single
spheres in Newtonian and non-Newtonian fluids using glass,
steel, plastic and rubber balls of different diameters. The
properties of the spheres are shown in Table 1. Also different
types of fluids were used; distilled water, (the oil type) oil,
glycerine and kerosene. Physical properties of these fluids are
shown in Table 2.


mailto:karama.eng@karary.net

Elrasheed M. Elhaj, et al. / UofKEJ Vol. 3 Issue 2 pp. 24-29 (August 2013)

Table 1. Properties of solid spheres used in the tests

Sphere Weight(g) Diameter Density (kg/m°)
(m)x10~2
Glass(1) 9.10 1.89 2574.00
Glass(2) 4.90 1.55 2513.00
Plastic 5.40 1.64 2338.00
Rubber 8.03 2.19 1460.00
Steel(1) 1.00 0.65 6954.00
Steel(2) 0.50 0.49 8116.00
Steel(3) 0.42 0.45 7800.00
Table 2. Properties of fluids tested
Fluids Density (kg/m®) Temperature
(©)
Glycerine (100%) 1255.00 31.0
Distilled water 0995.34 31.0
Lub Qil (grade (50)) 0880.00 31.0
Kerosene 0817.00 31.0

2.1 Experimental Procedure

Single particle was placed on the fluid surface at the centre of
the tube and left for free falling. This usual technique was to
attain the terminal falling velocity in a short period. A digital
stop watch of precision (0.01 s) was used to measure the time
required by the particle to cover the distance (100 cm) marked
on the tube. The recorded times were only considered when
the difference between two successive reading did not exceed
1%. This was to ensure that the particle has attained its
terminal falling velocity during the free falling. Each run was
repeated at least three times for each particle and an average
was taken.

2.2 Measurements of Solid Velocities Falling in
Newtonian and Non-Newtonian Liquid

Data collected for the falling velocities of single spheres in
Newtonian and non-Newtonian fluids were calculated. From
the measurements an average velocity for each combination of
sphere — fluids was computed. Using the average velocities
determined the solid — fluids properties were estimated. The
parameters of interest (i.e. V, Cp, Re) were then computed
and recorded. Also apparent viscosity (dynamic viscosity) of
fluids was calculated; by method of falling sphere [5]. Then
estimated shear rates and shear stresses of fluids were
calculated using the power law fluids (parameter n and k).
The most common approach taken by previous investigators
for predicting the terminal velocity was through the use of
standard Newtonian relationships (Cp—Re) using modified
(non-Newtonian or generalized) Reynolds number. For power
law fluids, the generalized Reynolds number was defined by,
[6-7].
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Where, k and n are two empirical curve-fitting parameters, are
known as the fluid consistency coefficient and the flow
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behaviour index; respectively. For a shear-thinning fluid, the
index may have any value between 0 and 1. The smaller the
value of n, the greater is the degree of shear-thinning. Power-

. . . Vi

law fluid behaviour and data correction for the shear rate (d—t)
P

with which the shear rate reflects the definition of particle

Reynolds number (Re,) shown in equation (2).

av,
Re b= ﬁ
Ha (2)

2.3 Dimensionless Parameters

Several dimensionless parameters were used to describe the
hydrodynamic equations. They include:
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When used non-Newtonian fluids the dimensionless include
apparent viscosity [, and the power law parameter n and k.
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Two sources were used for the behaviour of fluids [8]. Table 3
shows the Range of Re and power law parameter.
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Table 3. Comparison of Re and Power Law Parameter range Newtonian Fhiid
with literature 1000 4 non-Newtonian fluids

Source Re K (kg.s"/m?) n =
Non-
Newtonian #
Case Study 12 - 370 0.028 - 0.788 0.587 —0.971 100 ’g&
Kelessidis [7] 1-64 0.020-0.270 0.750—0.920 N
Miura [7] 4-770 0.170-0.590 0.560—0.780 > o
Newtonian ¥
Case Study 1-325 0.035-0.126 1.0 ’/(
Kelessidis [7] 16-1270 0.010 - 0.060 1.0 10 ¥

3. RESULTS AND DISCUSSION

Depending on the experimental results of the k and n values 1

all the values of Reynolds number of the particles (Re,) were 001 01 1 Ar 1o 100 1000
converted. The Archimedes’ number was plotted versus the _ . .

particles Reynolds number for non-Newtonian fluids. The Fig .1. Experimental data, (Archimedes’ number verse
regression analysis of these plots showed that the values of n particles Reynolds number).

and k are 0.779 and 0.403 respectively.

For all the spheres used in the experimental work and power- |, ¢ Non-Newtonian fluids

law liquid combination, the Archimedes number (Ar) can be
evaluated. Then the particle Reynolds number can then be
expressed in terms of Ar and n [9] as follows:

g
Re =aAr® 9) 1
where, 8 '\"\.\ iR
0.51 0.954 »
a= 0.1exp(— - 0.73nj and b= -0.160 1 Bk e
n n g

The expression for (a) is erroneously printed without the
multiplication factor of 0.1, and using the equation with the
wrong  coefficients gives always a  considerably o1
underestimated velocity [9]. So by the same approach propose T 10 Re 100 1000

similar expressed to evaluate experimental data. Suggested
simple empirical equation describes the relation between Ar Fig. 2. Behaviour of non-Newtonian fluids
and Re for non-Newtonian fluids, Fig. 1 as follows:

Re = aArb (10) W Exp.Data A Pre.Equation
100 ¢

where,

a= 0.0lexp(gj and b= 0'881—0.160 -

n n a
. 10 —=

Covered the range 27 < Ar < 11775 and 1 < Re < 481, with i
R? = 0.9915. Experimental data describe the parameters of al ] s
interested, Ar, Re,, Re and Cp predicted by equation (10), Ur
When used the value of n = 0.779 and substituted in equation I L]
(9) and (10) for the two constants a, b. it was Found that a 1 B
=0.108 and b = 1.065. Compared with predicted a = 0.062 i
and b=0.971. the error 8% for b and 42% for a, always i & ': LY.
the value of a corrected for given density of fluid (p),density
difference (Ap), sphere diameter (d), consistency index (k ) N T e T T
and the value of power law behaviour (n). Fig. 2 shows 01 Re
experimental data of drag coefficient related to the Reynolds 0.001 0.01 01 ! p 10 100 1000
number for non-Newtonian fluids. Fig. 3 shows predicted Re Fig_ 3. Experimenta| drag Compared with prediction for
related to Cp measured. Newtonian and non- Newtonian fluids
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3.1 Drag Coefficient Formula Proposed

The approach suggest plotting the drag coefficient versus
particles Reynolds number on a logarithmic paper .then
compare them with prediction by other investigators. Through
the region flow of Newton’s law the parameters of interest Vy,
Cpb, Re,, are estimated. By used nonlinear regression of 28
data points, selected form 49 point. The best fitted supporting
by trials and error methods [10-11]. Then we obtained simple
an empirical equation to predict drag coefficient. The equation
covered range of Reynolds number 2 < Re,< 129635 for
Newtonian and non-Newtonian fluids. Cp is predicted with
two terms, the first term can be considered as an extended
Stokes’ law applicable approximately for Re, < 424 as,

1862
Re?®

Co For 2 <Re,<424 1)

The second term for slight deviations from the Newton’s law
for high particles Reynolds number,

6Re, O9Re?
Co =042+ 57—~

For 550 < Re,, < 129635
(12)

Figures 2 and 3 show the experimental data fitted of non-
Newtonian behaviour and the prediction of drag coefficient
compare with experimental. Figures 4-6 show also
comparison of drag measured and predicted with (SDC) and
other investigators [9].

3.2  Root Mean Square

Equation of the general form given in the four most recent
correlations were sought, with the parameters determined by a
local minimization of the sum of the squared errors, Q,
defined as [12].

RMS:J%j (13)

where Q = (Z IogC:Dexp - IogCDpre )2

So for correlation the predicted equations (11) and (12) to
estimate drag coefficient find that, the RMS _Cp value,
computed and shown in Table (4).

3.3  Data and Prediction Comparison

Fig (5) shows the plotting of the non-Newtonian data for drag
coefficient Cp versus the Reynolds number Re. The
Newtonian as well as the non-Newtonian data is plotted in Fig
(6). Data from other investigators are also plotted, both non-
Newtonian data and Newtonian data [9].

Table (4) RMS_Cp, values.

Newtonian and non- Non-Newtonian
Newtonian only
RMS Cp 0.041 0.062
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3.4  Correlation Terminal Setting Velocity

On the other hand from experimental data analysis obtained
through different particles diameter used and the Grace
Method for the solution of the settling-velocity equation [12-
13]. For terminal falling velocity as function of diameter,
using two dimensionless parameters, (V" and d") shown in
Figures (7) and (8). The proposed formulas for Newtonian and
non-Newtonian fluids are as follows:

logly,”)=3€" Iog( ) 5 Iog(d*z)+ 0.35log(d")-2.89
0.74<V{ <142 and4<d <935 4

For non-Newtonian fluids,

loglv;”)=1.30-0.35log(d")+0.07logld }-0.0031l0gld " )

(15)
0.77<V, <14and4<d <65
1000
100
¢V
¢
L v 2
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Fig . 7. Dimensionless terminal velocity, V", as a function of
dimensionless particle diameter, d', for spheres falling in
Newtonian fluids
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Fig .8. Dimensionless terminal velocity, V*,, as a function of
dimensionless Particle diameter, d*, for spheres falling in
non- Newtonian fluids.

The purpose of most of the cited sphere drag experiments was
to develop correlations describing either the drag coefficient
or terminal velocity of a sphere. The results presented in the
previous section are of great importance of drag coefficient
prediction. Fig. 6 shows Cp measured and predicted compared
to SDC, very small variation for all Re, values less than 10%,
that means the empirical equation can be extended to predict
Cp for Newtonian and shear-thinning fluids.

For all experimental data, indicates that the RMS_Cp errors
are around 0.06, shown in table (4). The deviation in
experimental data of non- Newtonian compared with
Kelessidis indicated that, are smaller in the range of low Re,
(stokes region) and variation in intermediate Re, (creeping
flow), are shown in Figs 5 and 6. Foregoing analysis has
indicated that the terminal falling velocity of solid spheres
through stagnant non-Newtonian shear thinning fluids can be
predicted with engineering accuracy from various proposed
correlations for Newtonian fluids. This can be achieved
provided the apparent viscosity of the fluid is used, evaluated
at a shear rate given as the ratio of the falling velocity to the
sphere diameter.

4. CONCLUSIONS

Hydrodynamic equations of particles motion were
investigated on this study. The behaviour of drag and terminal
velocity on spherical particles flow in Newtonian and non-
Newtonian fluids were explored. This provided information
such as the drag coefficient for particles of various sizes and
density; which are much required parameters in CFD
programs for the prediction and modelling of particle flow. It
is recommended that the temperature effect must be
considered, for fluids properties, because it has great effective
on the dynamic viscosity which extended to shear rate and
behaviour of particles motion.

The further work can be used for other types of fluids, such
as visco-elastic and gaseous fluids.
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Nomenclature

Archimedes’ number dimensionless
Parameter assigned for equation (9) dimensionless
Parameter assigned for equation (10)  dimensionless

Drag coefficient dimensionless
Particle diameter cm

Dimensionless particles diameter dimensionless
Consistency index dimensionless
Fluid flow behaviour index dimensionless
Reynolds number dimensionless
Generalized Reynolds humber dimensionless
Particle Reynolds humber dimensionless
Solid terminal velocity m/s

Particle terminal velocity m/s

Dimensionless terminal velocity dimensionless

Greek letters

Ap Density difference, (ps—p)/p glem®
Ps Solid density glem?
Pr Fluid density glem?
n Fluid viscosity g/cm.s
Ua Apparent viscosity g/cm.s
Subscripts

a Apparent

exp Experimental

gn Generalized

t Terminal

p Particle

pre Predicted

S Solid

Dimensionless
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Abbreviations

RMS Root Mean Square
SDC Standard Drag Curve
CFD Computational Fluids Dynamics



