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Abstract: This paper compares one-point quadrature with analytical integration as efficient alternative integration
techniques to standard two-point Gauss-Legendre quadrature for finite-element codes that adopt bi-linear
quadrilateral elements. The accuracy of the solutions obtained by the two alternative schemes for the heat-
conduction problem on a square domain was compared with that obtained by standard two-point quadrature. The
results show that one-point quadrature saves 75.0% of computer time compared to the two-point quadrature scheme
while analytical integration saves 37.5% of computer time. Although, one-point quadrature generally requires an
“hour-glass” correction, the paper shows that such a correction is not necessary when a Dirichlet boundary condition
is applied over a large part of the solution domain. Solution of the conduction problem on a skewed domain proves
that one-point quadrature remains acceptably accurate even for highly distorted elements.
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1. INTRODUCTION

Scientific and engineering problems often involve the solution
of ordinary or partial differential equations that cannot be
obtained analytically. Therefore, the equations are solved
using computer-based numerical methods, such as the finite
element (FE) method and the finite-volume (FV) method.
These numerical methods transform the given differential
equation into an algebraic system, the solution of which yields
approximate values of the dependent variable (e.g.
temperature) at selected values of the independent variable
(e.g. space or time). The availability of powerful and cheap
personal computers (PCs) nowadays, allowed scientists and
engineers in almost all fields to take advantage of the
computer-based numerical software. However, the type and
size of the problems that can be solved on PCs are still limited
compared to modern mainframe computers and
supercomputers which are much faster. Supercomputers also
have parallel and vector processing capabilities and by taking
advantage of these special features the computational speed
can be increased by orders of magnitude while reducing the
storage requirement of the numerical solution. Personal
computers, which do not have such capabilities, require
special techniques in order to minimise their computation
requirements.

The need to adopt efficient numerical techniques appears
clearly when applying the FE method on a PC. Compared to
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other numerical methods, the FE method offers greater
flexibility in handling difficult geometrical and boundary
conditions but its running time is high. The most time-
consuming step in the FE method is usually the formation of
the elemental matrices that require numerical integration at
element-level. For the bi-linear element, which is a commonly
used element in FE codes, the standard two-point Gauss-
Legendre quadrature, is time consuming. In order to minimise
the computational time, Gresho and Sani [1] and Molina and
Huot [2] used one-point quadrature. Compared to the two-
point quadrature, one-point quadrature reduces the
computation time by a factor of 4 for 2D elements and a
factor of 8 for 3D elements. However, in fluid-flow and heat-
transfer problems one-point-quadrature solutions exhibit an
oscillatory behaviour known as "hour-glass" mode. Gresho
and Sani [1] added an ‘“hour-glass” correction term to
suppress the oscillations which result from under-integration
of the diffusion term in the governing equation. As an
alternative to one-point quadrature, Mizukami [3] suggested
analytic-integration formula which are exact only for the
parallelogram bi-linear element but can be used as a good
approximation for the general quadrilateral element. Although
he showed that the analytical integration does not produce the
characteristic oscillatory behaviour of one-point quadrature,
he did not report the values of the computation time.

This paper compares the accuracy and computer time of one-
point quadrature and analytical integration by solving the heat
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conduction problem on a personal computer using bi-linear
quadrilateral elements. The governing equation for the heat
conduction problem, Laplace equation, is met in many other
engineering and scientific applications. A brief description of
the FE method is given in Section 2 and the alternative
integration techniques are described in Section 3. Section 4
considers the solution of the heat conduction problem in a
square plate where undistorted elements can be used. The
problem associated with one-point quadrature, and the effect
of hour-glass correction, is also discussed in this section.
Section 5 deals with the issue of element distortion by solving
the heat-conduction problem on a skewed domain.

2. THE FINITE-ELEMENT METHOD

The finite element method has its origin in the aerospace
industry where it was used to study stresses in complex
airframe structures [4,5]. However, the true potential of the
method became apparent when it was later extended by using
the calculus of variations and the weighted-residual methods
to become a general numerical method for solving field
equations. Field equations that govern many scientific and
engineering problems can be written as:

Du)=q inQ (1)
where, D is the differential operator, u the dependent variable,
g a function that specifies the prescribed boundary conditions,
and Q the solution domain. Fig. (1.a) shows the domain of the
problem with three types of possible boundary conditions. At
the part of the boundary (A-B and E-F) where certain values
of u are known, the boundary condition is known as a
Dirichlet type. At the part of the boundary (B-C-D-E) where
the normal gradient of u is specified, the boundary condition
is known as a flux type. At the part of the boundary (A-F)
where the flux is zero, the boundary condition is known as a
Neumann type.

The finite element method is a numerical analysis technique
for obtaining approximate solutions to Eq. (1) when an exact
analytical solution cannot be found. Two popular

(a)

Fig. 1. The problem domain and its finite-element representation
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formulations of the method are the Ritz and the Galerkin
formulations. The Ritz formulation requires the differential
equation Eq. (1) to be converted into an integral form using
calculus of variation. Sometimes the integral form is easily
derivable from the physics of the problem, but for many
practical engineering problems finding the variational form of
the equation is difficult. A good example of this is the Navier-
Stokes equations that govern fluid-flows. To solve such
problems, scientists and engineers use Galerkin formulation,
which applies the weighted-residual methods. Accordingly,
the solution domain is divided into small regions called
"elements”, as shown on Fig. (1.b). The elements are
connected with "nodes". The variation of the dependent
variable u in each element is represented by a simple function

U that approximates u within the element. Substituting the

approximate primary variable U in Eq. (1), results in a
residue (R) that depends on the approximating function, i.e.,

D(U)-q=R @)

If the residue R can be made equal zero everywhere, then the
approximate solution becomes equal to the true value. Since it
is very difficult to make the residue 0 at all points, a weighted
residual is made equal to zero, i.e.,

j WRdA =0 3)
Q

where w is a weighting function and dA is the area of the
element.

In the Galerkin method, the weighting function w has the
same mathematical form as the approximating function U .
The unknown coefficients of the function are replaced by the
unknown nodal values of U :

0 =[NJum)

where [N] is the matrix of shape functions and {u™} is the
nodal values of U .

(4)

Nodes

L\

Elements

(b)
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Substituting Eq. (4) in Eq. (1) leads to an algebraic system of
equations in terms of the elemental values of U . The
elemental system of algebraic equations takes the form:
KLU 3 = (®)

where [K]® is called the element stiffness matrix, {U }* is
the vector containing the values of the unknown field variable
at element nodes, and {f}*! is the corresponding force vector.
The sizes of [k]®, {U }*!, and {f}**! are mxm, mx1, and mx1,
respectively, where m is the number of nodes in the element.
A global algebraic system is then formed by assembling the

smaller systems given by Eq. (5). The algebraic system thus
obtained takes the form:

[KKO}={f}
(6)

where [K] is the global stiffness matrix, {U } is the global
vector that contains the solution of the governing partial
differential equation at selected points in space or time,
and{f} is the global "force" vector. The boundary conditions
are then applied to the assembled system and the system is
solved by a suitable solver.

3. FORMATION OF THE ELEMENT STIFFNESS
MATRIX

Entries of the element stiffness matrix, k[e], are obtained by

evaluating some integrals over the element which involve the
shape functions and/or their derivatives such as [4]:

dN, dN,
J N CON,(x)dx, f[e]aa

where N;(X) and N»(x) are the two shape functions associated
with node 1 and node 2 of a one-dimensional linear element.
For two-dimensional problems, the shape functions are
functions of both x and y. Accordingly, the integral over the
element takes the following form:

ki =[] p(x.y)oxoy ™

where, p(x,y) is a polynomial of a degree that depends on the
order and shape of the element used as well as the governing
equation itself. Except for elements of low orders and simple
shapes, explicit analytic expressions are not available for the
above integral, which has to be evaluated numerically.

Gauss-Legendre quadrature is the numerical integration
method usually adopted in FE codes for evaluating the
integrals in Eq. (7), because of its efficiency compared to
other techniques. Accordingly, the integral is first transformed
into the local (& 7) plane, where —1< ¢'<1 and -1< 7<1. The
integral then becomes:

+1+1

kit = [ [ p(sm Absp agor

-1-1

®)
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where J is the Jacobian matrix of transformation and |J| its
determinant. Introducing a new function g = Abs|J|x p(<;7)
and applying Gauss-Legendre quadrature, the integral is then
evaluated as:

2 2
kiT=>T >0 wiwg(Gm)
j=1 =l
where g(Gi ;) are values of the function g({n) at the
sampling points and w; w; are the corresponding weighting
values. Gauss-Legendre quadrature with n sampling points is
exact for polynomials of degree up to 2n-1. Since two-point
quadrature (2PQ) is exact for polynomials of up to degree 3, it
is usually used for the bi-linear quadrilateral or triangular
elements used in most finite-element codes. For two-
dimensional problems, 2PQ requires four sampling points
(two in each direction) and for three-dimensional problems, it
requires eight sampling points. Therefore, the computation of
the element systems and their assembly into the global system
is usually the most time consuming step in the finite element
solution.

©)

3.1 One-Point Quadrature

One-point quadrature (1PQ) evaluates the element integrals at
a single point, which is at the centroid of the element. The
weighting constants in Gauss-Legendre quadrature w; and w;
both take the value of 2. The integral in Eq. (9) is then
evaluated as:

KL ~ 2x2 g(Como) (10)

where g(Co,mo) is the value of g(¢,n) at the single sampling
point. Since g({,m) is evaluated once, 1PQ reduces the
computational time of 2D problems by a factor of four and
that of 3D problems by a factor of eight. However, the penalty
for this saving in time could be a reduction in accuracy.
Moreover, 1PQ solutions are contaminated by spurious
oscillations, or "wiggles”, caused by the reduced integration
of diffusion-like terms [1,6,7]:

[e] I J‘ ou 8U 1)

To suppress these oscHIatlons in the 1PQ solution, Gresho and
Sani [1] added the following hour-glass correction (HGC) to
the element diffusion matrix:

H i[-e] =cxx' ki[-e] (12)

where, k[ lis the element diffusion matrix generated via

one-point quadrature, x is a vector with four elements, x' =
[1,-1,1,-1] its transpose, and c is a tuning constant. It should
also be mentioned that reduced integration is used for
purposes other than its computational saving. For example, in
non-linear elastodynamics analysis, full Gauss-Legendre
quadrature is known to be subjected to volumetric locking for
incompressible or nearly incompressible materials. For this
case, Duarte Filho and Awruch [6] and Duarte Filho et al. [7]
used 1PQ to prevent volumetric locking.



M. El-Awad / UofKEJ Vol. 1 Issue 1 pp. 18-24 (June 2011)

3.2 Analytical Integration

For simple cases, the integral in Eq. (7) can be obtained
analytically. Mizukami [3] showed that, for the bilinear
quadrilateral element, the elemental integrals could be
expressed explicitly in terms of nodal values by using the
following three functions:

a(XYi) = (X3 —X1)(Ya —Y2) — (Xs —X2)(Y3 —Y1) (13.3)
B(XiYi) = (Xa —X3) (Y2 —Y1) — (X2 —X1) (Y4 —Y3) (13.b)
Y(XiYi) = (X2 —Xa) (Y3 —Y2) — (X3 —X2) (Y1 —Ya) (13.c)

where, the suffices 1 to 4 refer to the elements nodes (refer to
Fig. 1.b). Using the above formulae, the element stiffness
matrix for the diffusion term could be calculated from:

ou ou
el _ [[ M Mooy =
ki _”axay X
Xy

{%a(uk : yk)a(xkluk)+%ﬁ(uk Vi) B (X5 Uy )

1
+67(uk’yk)y(xk’uk)}/a(xk'yk) (14)

Although Mizukami’s formulae are only exact for a
parallelogram element, they can be used as a good
approximation of the general four-node quadrilateral element.
Mizukami [3] compared the accuracy of his analytical
integration (Al) formula, with that of one-point quadrature by
solving the transient heat conduction equation in a circular
plate. His results showed that Al did not produce the
oscillatory behaviour associated with 1PQ, but the
computation times were not given. The limitation of
analytical integration for more general elements is that exact
analytical formulae cannot be obtained easily. Therefore, Al
did not find a wide application in FE codes. However, with
the development of computer-based symbolic integration
software such as MAPLE there has been renewed interest in
Al [8,9]. Videla et al [8] obtained a saving in computer time
of more than 50% by using Al instead of Gauss-Legendre
quadrature for evaluating the stiffness matrix of a 8-noded
plane quadrilateral sub-parametric finite element. They also
conducted a sensitivity analysis to show that their Al
formulae lead to more accurate results compared to Gauss-

y
A @y
01) T=0 '
oT
-0
ax T=0
oT
Yo
T(0,0)=1 oy R
0.0) woy X

Legendre quadrature even in the case of highly distorted
elements.

3. HEAT-CONDUCTION IN A SQUARE PLATE

The two-dimensional heat conduction problem, used here to
compare the accuracy and computer time of the alternative
integration methods, is governed by the following equation:

oT 8’1 o
oA ()

where, x and y refer to the two coordinates, t to time, and T to
temperature. At steady state, the problem is reduced to:

’T o

_ =

ox2 8y2
Equation (16) is Laplace equation which is met in different
engineering applications. The equation was solved on the
square plate of unit width shown on Fig. (2.a) which also
shows the boundary conditions.

0 (16)

The problem was first solved for the case when the
temperature is specified at a single point, the bottom left
corner. A uniform 10x10 grid was used as shown on Fig.
(2.b). The numerical scheme, which followed that of Gresho
and Sani [1], used four-node, isoparametric elements for the
spatial discretization and the explicit forward Euler scheme
for the time integration. Fig. (3) shows the solutions obtained
by the alternative integration methods after 30 iterations. The
figure shows the solutions obtained for this case with 2PQ, Al
and 1PQ after 30 solution steps. As the figure suggests, the
solution with 1PQ exhibited an unrealistic oscillatory
behaviour that was not exhibited by the analytical integration
formula given by Mizukami [3]. Fig. (3) also shows the
results of 1PQ with hour-glass correction. The oscillation-free
solution shown on Fig. (3.d) was obtained by taking the value
of the tuning constant c in Eq. (12) as 0.1.

Other tests with modified boundary conditions showed that
the oscillations in the 1PQ solution diminished gradually as
more nodes at the bottom (or left) boundary of the solution
domain were assigned Dirichlet values without adding the

Fig. 2. Heat conduction problem: (a) boundary conditions, (b) FE grid
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Fig. 3. Heat-conduction problem with the boundary condition T = 1.0 at (0,0):
solutions with (a) 2PQ, (b) Al, (c¢) 1PQ without HGC and (d) 1PQ with HGC.

hour-glass correction. Figure (4) shows the results for the case
in which temperature varied linearly with x and y at the
bottom side and the left side of the plate. The figure shows a
good agreement between the solutions obtained with Al and
1PQ, with and without hour-glass correction, with that of the
solution obtained with the standard 2PQ.

On a PC with a 1333 MHz mobile Intel® Celeron™
processor, the CPU times for 2PQ, Al and 1PQ were 8.0x107%,
5.0x10% and 2.0x10° seconds, respectively. The added
computer time due to the hour-glass correction was
insignificant. These figures show that the computer time for
the analytical integration is comparable to that of the standard
two-point quadrature, but one-point quadrature reduced the
time by a factor of four.

5. HEAT-CONDUCTION IN A SKEWED PLATE

Because of regular geometry, the FE solution applied
undistorted elements in solving the test case considered
above. To compare the accuracy of one-point quadrature to
that of two-point quadrature when distorted elements are
used, the steady heat conduction equation (Eq. 16) was solved
on the skewed domain shown on Fig. (5). As happened
before, the edges of the plate had unit lengths, but the height
H, given by H = sin (#) decreased with decreasing 0 (Fig.
5.b). A linear variation of T from 1 to 0 was imposed on both
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the bottom and left boundaries of the domain, while zero
values were assigned at both the upper boundary and right
boundary of the domain. The problem was solved for different
values of the angle 8 on a 10x10 grid. Fig. (6) which
compares the solutions obtained at @ =30° shows that the
solution with 1PQ, with and without HGC, agreed well with
that obtained with 2PQ.

6. CONCLUDING REMARKS

For the quadrilateral bi-linear element which is commonly
used in finite-element codes, the present paper shows that
one-point quadrature is favourable over analytical integration
as an efficient alternative to standard two-point Gauss-
Legendre quadrature. While the computer time for the
analytical integration is comparable to that of the standard
two-point quadrature, one-point quadrature reduced the
computer time by a factor of four. Laplace equation, which is
considered here, is met in many engineering and scientific
applications. Therefore, the present analysis is also relevant to
these applications. However, it should be mentioned that the
two test cases considered here applied Dirichlet or Neumann
type of boundary conditions which did not require evaluation.
For problems with specified non-zero heat flux at the
boundary, calculating the contribution from boundary
conditions with one-point quadrature may reduce the accuracy
of the FE method. Since boundary integrals do not usually
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(c) 1PQ (d) 1PQ+HGC
Fig. 4. Heat-conduction problem with boundary condition (T = 1-x) at y=0 and (T = 1-y) at x=0: solutions with (a) 2PQ, (b)
Al, (c) 1PQ without HGC and (d) 1PQ with HGC.
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Fig. 5. Heat conduction problem in a skewed domain
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Fig. 6. Solutions of the heat conduction problem in a skewed domain
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contribute much to the total computation time, two-point
quadrature can be used in their calculation for such problems.
In this regard, the study suggests that an important advantage
of 1PQ over Al is that it allows the selective use of 2PQ and
1PQ with minor modifications to existing finite-elements
codes that use the standard 2PQ.
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