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Abstract: This paper compares one-point quadrature with analytical integration as efficient alternative integration 

techniques to standard two-point Gauss-Legendre quadrature for finite-element codes that adopt bi-linear 

quadrilateral elements. The accuracy of the solutions obtained by the two alternative schemes for the heat-

conduction problem on a square domain was compared with that obtained by standard two-point quadrature. The 

results show that one-point quadrature saves 75.0% of computer time compared to the two-point quadrature scheme 

while analytical integration saves 37.5% of computer time. Although, one-point quadrature generally requires an 

“hour-glass” correction, the paper shows that such a correction is not necessary when a Dirichlet boundary condition 

is applied over a large part of the solution domain. Solution of the conduction problem on a skewed domain proves 

that one-point quadrature remains acceptably accurate even for highly distorted elements. 
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1. INTRODUCTION 

 

Scientific and engineering problems often involve the solution 

of ordinary or partial differential equations that cannot be 

obtained analytically. Therefore, the equations are solved 

using computer-based numerical methods, such as the finite 

element (FE) method and the finite-volume (FV) method. 

These numerical methods transform the given differential 

equation into an algebraic system, the solution of which yields 

approximate values of the dependent variable (e.g. 

temperature) at selected values of the independent variable 

(e.g. space or time). The availability of powerful and cheap 

personal computers (PCs) nowadays, allowed scientists and 

engineers in almost all fields to take advantage of the 

computer-based numerical software. However, the type and 

size of the problems that can be solved on PCs are still limited 

compared to modern mainframe computers and 

supercomputers which are much faster. Supercomputers also 

have parallel and vector processing capabilities and by taking 

advantage of these special features the computational speed 

can be increased by orders of magnitude while reducing the 

storage requirement of the numerical solution. Personal 

computers, which do not have such capabilities, require 

special techniques in order to minimise their computation 

requirements.  

 

The need to adopt efficient numerical techniques appears 

clearly when applying the FE method on a PC. Compared to 

other numerical methods, the FE method offers greater 

flexibility in handling difficult geometrical and boundary 

conditions but its running time is high. The most time-

consuming step in the FE method is usually the formation of 

the elemental matrices that require numerical integration at 

element-level. For the bi-linear element, which is a commonly 

used element in FE codes, the standard two-point Gauss-

Legendre quadrature, is time consuming. In order to minimise 

the computational time, Gresho and Sani [1] and Molina and 

Huot [2] used one-point quadrature. Compared to the two-

point quadrature, one-point quadrature reduces the 

computation time by a factor of 4 for 2D elements and a 

factor of 8 for 3D elements. However, in fluid-flow and heat-

transfer problems one-point-quadrature solutions exhibit an 

oscillatory behaviour known as "hour-glass" mode. Gresho 

and Sani [1] added an “hour-glass” correction term to 

suppress the oscillations which result from under-integration 

of the diffusion term in the governing equation. As an 

alternative to one-point quadrature, Mizukami [3] suggested 

analytic-integration formula which are exact only for the 

parallelogram bi-linear element but can be used as a good 

approximation for the general quadrilateral element. Although 

he showed that the analytical integration does not produce the 

characteristic oscillatory behaviour of one-point quadrature, 

he did not report the values of the computation time. 

 

This paper compares the accuracy and computer time of one-

point quadrature and analytical integration by solving the heat 
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conduction problem on a personal computer using bi-linear 

quadrilateral elements. The governing equation for the heat 

conduction problem, Laplace equation, is met in many other 

engineering and scientific applications. A brief description of 

the FE method is given in Section 2 and the alternative 

integration techniques are described in Section 3. Section 4 

considers the solution of the heat conduction problem in a 

square plate where undistorted elements can be used. The 

problem associated with one-point quadrature, and the effect 

of hour-glass correction, is also discussed in this section. 

Section 5 deals with the issue of element distortion by solving 

the heat-conduction problem on a skewed domain. 

 

2. THE FINITE-ELEMENT METHOD 

 

The finite element method has its origin in the aerospace 

industry where it was used to study stresses in complex 

airframe structures [4,5]. However, the true potential of the 

method became apparent when it was later extended by using 

the calculus of variations and the weighted-residual methods 

to become a general numerical method for solving field 

equations. Field equations that govern many scientific and 

engineering problems can be written as: 

 

D (u) = q   in Ω   (1) 

 

where, D is the differential operator, u the dependent variable, 

q a function that specifies the prescribed boundary conditions, 

and Ω the solution domain. Fig. (1.a) shows the domain of the 

problem with three types of possible boundary conditions. At 

the part of the boundary (A-B and E-F) where certain values 

of u are known, the boundary condition is known as a 

Dirichlet type. At the part of the boundary (B-C-D-E) where 

the normal gradient of u is specified, the boundary condition 

is known as a flux type. At the part of the boundary (A-F) 

where the flux is zero, the boundary condition is known as a 

Neumann type.  

 

The finite element method is a numerical analysis technique 

for obtaining approximate solutions to Eq. (1) when an exact 

analytical solution cannot be found. Two popular 

formulations of the method are the Ritz and the Galerkin 

formulations. The Ritz formulation requires the differential 

equation Eq. (1) to be converted into an integral form using 

calculus of variation. Sometimes the integral form is easily 

derivable from the physics of the problem, but for many 

practical engineering problems finding the variational form of 

the equation is difficult. A good example of this is the Navier-

Stokes equations that govern fluid-flows. To solve such 

problems, scientists and engineers use Galerkin formulation, 

which applies the weighted-residual methods. Accordingly, 

the solution domain is divided into small regions called 

"elements", as shown on Fig. (1.b). The elements are 

connected with "nodes". The variation of the dependent 

variable u in each element is represented by a simple function 

u~ that approximates u within the element. Substituting the 

approximate primary variable u~  in Eq. (1), results in a 

residue (R) that depends on the approximating function, i.e., 

     

                  D (u~ ) - q = R     (2) 

 

If the residue R can be made equal zero everywhere, then the 

approximate solution becomes equal to the true value. Since it 

is very difficult to make the residue 0 at all points, a weighted 

residual is made equal to zero, i.e., 

 


AwRd = 0    (3) 

where w is a weighting function and dA is the area of the 

element. 

 

In the Galerkin method, the weighting function w has the 

same mathematical form as the approximating function u~ . 

The unknown coefficients of the function are replaced by the 

unknown nodal values of u~ :  

  

   neuNu ~
    (4) 

 

where [N] is the matrix of shape functions and {u
ne

} is the 

nodal values of u~ . 

 

 

(a)                                             (b) 

Fig. 1. The problem domain and its finite-element representation 
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Substituting Eq. (4) in Eq. (1) leads to an algebraic system of 

equations in terms of the elemental values of u~ . The 

elemental system of algebraic equations takes the form: 

 

                [k]
[e] 

{ u~ }
[e]

 = {f}
[e]

   (5) 

 

where [k]
[e]

 is called the element stiffness matrix, { u~ }
[e]

 is 

the vector containing the values of the unknown field variable 

at element nodes, and {f}
[e]

 is the corresponding force vector. 

The sizes of [k]
[e]

, { u~ }
[e]

, and {f}
[e]

 are mxm, mx1, and mx1, 

respectively, where m is the number of nodes in the element. 

A global algebraic system is then formed by assembling the 

smaller systems given by Eq. (5). The algebraic system thus 

obtained takes the form: 

 

}{}~]{[ fuk      

      (6) 

where [k] is the global stiffness matrix, { u~ } is the global 

vector that contains the solution of the governing partial 

differential equation at selected points in space or time, 

and{f} is the global "force" vector. The boundary conditions 

are then applied to the assembled system and the system is 

solved by a suitable solver.  

 

3. FORMATION OF THE ELEMENT STIFFNESS 

MATRIX 

 

Entries of the element stiffness matrix, 
][ek , are obtained by 

evaluating some integrals over the element which involve the 

shape functions and/or their derivatives such as [4]: 

 dxxNxN
e ][

21 )()( , dx
dx

dN

dx

dN

e

2

][

1

   

 

where N1(x) and N2(x) are the two shape functions associated 

with node 1 and node 2 of a one-dimensional linear  element. 

For two-dimensional problems, the shape functions are 

functions of both x and y. Accordingly, the integral over the 

element takes the following form: 

 

 
][e

ijk   = yxyxp
x y  ),(      (7) 

 

where, p(x,y) is a polynomial of a degree that depends on the 

order and shape of the element used as well as the governing 

equation itself. Except for elements of  low orders and simple 

shapes, explicit analytic expressions are not available for the 

above integral, which has to be evaluated numerically. 

  

Gauss-Legendre quadrature is the numerical integration 

method usually adopted in FE codes for evaluating the 

integrals in Eq. (7), because of its efficiency compared to 

other techniques. Accordingly, the integral is first transformed 

into the local (,) plane, where –1  1 and –1 1. The 

integral then becomes: 

 
][e

ijk  =  








1

1

1

1

p(,) Abs|J|                      (8) 

where J is the Jacobian matrix of transformation and |J| its 

determinant. Introducing a new function g = Abs|J| p(,) 

and applying Gauss-Legendre quadrature, the integral is then 

evaluated as: 

 
][e

ijk  


2

1j




2

1i

wi wj g(i ,j)                  (9) 

where g(i ,j) are values of the function g(,) at the 

sampling points and wi, wj are the corresponding weighting 

values. Gauss-Legendre quadrature with n sampling points is 

exact for polynomials of degree up to 2n-1. Since two-point 

quadrature (2PQ) is exact for polynomials of up to degree 3, it 

is usually used for the bi-linear quadrilateral or triangular 

elements used in most finite-element codes. For two-

dimensional problems, 2PQ requires four sampling points 

(two in each direction) and for three-dimensional problems, it 

requires eight sampling points. Therefore, the computation of 

the element systems and their assembly into the global system 

is usually the most time consuming step in the finite element 

solution. 

 

3.1 One-Point Quadrature 

 

One-point quadrature (1PQ) evaluates the element integrals at 

a single point, which is at the centroid of the element. The 

weighting constants in Gauss-Legendre quadrature wi and wj 

both take the value of 2. The integral in Eq. (9) is then 

evaluated as: 

  

 
][e

ijk   2x2 g(o,o),             (10) 

 

where g(o,o) is the value of g(,) at the single sampling 

point. Since g(,) is evaluated once,  1PQ reduces the 

computational time of 2D problems by a factor of four and 

that of 3D problems by a factor of eight. However, the penalty 

for this saving in time could be a reduction in accuracy. 

Moreover, 1PQ solutions are contaminated by spurious 

oscillations, or "wiggles”, caused by the reduced integration 

of diffusion-like terms [1,6,7]: 

  

  
][e

ijk  =    








x y

yx
y

u

x

u
               (11) 

To suppress these oscillations in the 1PQ solution, Gresho and 

Sani [1] added the following hour-glass correction (HGC) to 

the element diffusion matrix: 

 

  
][e

ijH   = c x.x
T
 

][e

ijk                (12) 

where, 
][e

ijk is the element diffusion  matrix  generated  via  

one-point quadrature, x is a vector with four elements, x
T
 = 

[1,-1,1,-1] its transpose, and c is a tuning  constant. It should 

also be mentioned that reduced integration is used for 

purposes other than its computational saving. For example, in 

non-linear elastodynamics analysis, full Gauss-Legendre 

quadrature is known to be subjected to volumetric locking for 

incompressible or nearly incompressible materials. For this 

case, Duarte Filho and Awruch [6] and Duarte Filho et al. [7] 

used 1PQ to prevent volumetric locking.  
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3.2 Analytical Integration 

 

For simple cases, the integral in Eq. (7) can be obtained 

analytically. Mizukami [3] showed that, for the bilinear 

quadrilateral element, the elemental integrals could be 

expressed explicitly in terms of nodal values by using the 

following three functions:  

 

       (xk,yk) = (x3 –x1)(y4 –y2) – (x4 –x2)(y3 –y1)            (13.a)  

       (xk,yk) = (x4 –x3)(y2 –y1) – (x2 –x1)(y4 –y3)            (13.b)  

        (xk,yk) = (x1 –x4)(y3 –y2) – (x3 –x2)(y1 –y4)            (13.c)  

 

where, the suffices 1 to 4 refer to the elements nodes (refer to 

Fig. 1.b). Using the above formulae, the element stiffness 

matrix for the diffusion term could be calculated from:  

yx
y

u

x

u
k

x y

e
ij 








  

][  =  

),(),(
6

1
),(),(

2

1
kkkkkkkk uxyuuxyu  



  

  ),(/),(),(
6

1
kkkkkk yxuxyu 





   (14)      

                

Although Mizukami’s formulae are only exact for a 

parallelogram element, they can be used as a good 

approximation of the general four-node quadrilateral element. 

Mizukami [3] compared the accuracy of his analytical 

integration (AI) formula, with that of one-point quadrature by 

solving the transient heat conduction equation in a circular 

plate. His results showed that AI did not produce the 

oscillatory behaviour associated with 1PQ, but the 

computation times were not given. The limitation of 

analytical integration for more general elements is that exact 

analytical formulae cannot be obtained easily. Therefore, AI 

did not find a wide application in FE codes. However, with 

the development of computer-based symbolic integration 

software such as MAPLE there has been renewed interest in 

AI [8,9]. Videla et al [8] obtained a saving in computer time 

of more than 50% by using AI instead of Gauss-Legendre 

quadrature for evaluating the stiffness matrix of a 8-noded 

plane quadrilateral sub-parametric finite element. They also 

conducted a sensitivity analysis to show that their AI 

formulae lead to more accurate results compared to Gauss-

Legendre quadrature even in the case of highly distorted 

elements.  

 

3. HEAT-CONDUCTION IN A SQUARE PLATE 

 

The two-dimensional heat conduction problem, used here to 

compare the accuracy and computer time of the alternative 

integration methods, is governed by the following equation:  

 

      
2

2

2

2

y

T

x

T

t

T














                                        (15) 

   

where, x and y refer to the two coordinates, t to time, and T to 

temperature. At steady state, the problem is reduced to: 

 

               0
2

2

2

2











y

T

x

T                                            (16)   

Equation (16) is Laplace equation which is met in different 

engineering applications. The equation was solved on the 

square plate of unit width shown on Fig. (2.a) which also 

shows the boundary conditions. 

 

The problem was first solved for the case when the 

temperature is specified at a single point, the bottom left 

corner. A uniform 10x10 grid was used as shown on Fig. 

(2.b). The numerical scheme, which followed that of Gresho 

and Sani [1], used four-node, isoparametric elements for the 

spatial discretization and the explicit forward Euler scheme 

for the time integration. Fig. (3) shows the solutions obtained 

by the alternative integration methods after 30 iterations. The 

figure shows the solutions obtained for this case with 2PQ, AI 

and 1PQ after 30 solution steps. As the figure suggests, the 

solution with 1PQ exhibited an unrealistic oscillatory 

behaviour that was not exhibited by the analytical integration 

formula given by Mizukami [3]. Fig. (3) also shows the 

results of 1PQ with hour-glass correction. The oscillation-free 

solution shown on Fig. (3.d) was obtained by taking the value 

of the tuning constant c in Eq. (12) as 0.1.  

 

Other tests with modified boundary conditions showed that 

the oscillations in the 1PQ solution diminished gradually as 

more nodes at the bottom (or left) boundary of the solution 

domain were assigned Dirichlet values without adding the  

 

 

 

Fig. 2. Heat conduction problem: (a) boundary conditions, (b) FE grid 
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(a) 2PQ (b) AI 

 

 
(c) 1PQ (d) 1PQ + HGC 

Fig. 3. Heat-conduction problem with the boundary condition T = 1.0 at (0,0):  

solutions with (a) 2PQ, (b) AI, (c) 1PQ without HGC and (d) 1PQ with HGC. 

 
 

hour-glass correction. Figure (4) shows the results for the case 

in which temperature varied linearly with x and y at the 

bottom side and the left side of the plate. The figure shows a 

good agreement between the solutions obtained with AI and 

1PQ, with and without hour-glass correction, with that of the 

solution obtained with the standard 2PQ. 

  

On a PC with a 1333 MHz mobile Intel® Celeron™ 

processor, the CPU times for 2PQ, AI and 1PQ were 8.0×10
-2

, 

5.0×10
-2

, and 2.0×10
-2

 seconds, respectively. The added 

computer time due to the hour-glass correction was 

insignificant. These figures show that the computer time for 

the analytical integration is comparable to that of the standard 

two-point quadrature, but one-point quadrature reduced the 

time by a factor of four. 

 

5. HEAT-CONDUCTION IN A SKEWED PLATE 

 

Because of regular geometry, the FE solution applied 

undistorted elements in solving the test case considered 

above. To compare the accuracy of one-point quadrature to 

that of two-point quadrature when distorted elements are 

used, the steady heat conduction equation (Eq. 16) was solved 

on the skewed domain shown on Fig. (5). As happened 

before, the edges of the plate had unit lengths, but the height 

H, given by H = sin (θ) decreased with decreasing θ (Fig. 

5.b). A linear variation of T from 1 to 0 was imposed on both 

the bottom and left boundaries of the domain, while zero 

values were assigned at both the upper boundary and right 

boundary of the domain. The problem was solved for different 

values of the angle θ on a 10x10 grid. Fig. (6) which 

compares the solutions obtained at θ =30
o
 shows that the 

solution with 1PQ, with and without HGC, agreed well with 

that obtained with 2PQ. 

 

6. CONCLUDING REMARKS 

 

For the quadrilateral bi-linear element which is commonly 

used in finite-element codes, the present paper shows that 

one-point quadrature is favourable over analytical integration 

as an efficient alternative to standard two-point Gauss-

Legendre quadrature. While the computer time for the 

analytical integration is comparable to that of the standard 

two-point quadrature, one-point quadrature reduced the 

computer time by a factor of four. Laplace equation, which is 

considered here, is met in many engineering and scientific 

applications. Therefore, the present analysis is also relevant to 

these applications. However, it should be mentioned that the 

two test cases considered here applied Dirichlet or Neumann 

type of boundary conditions which did not require evaluation. 

For problems with specified non-zero heat flux at the 

boundary, calculating the contribution from boundary 

conditions with one-point quadrature may reduce the accuracy 

of the FE method. Since boundary integrals do not usually  
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(a) 2PQ (b) AI 

 

 
 

(c) 1PQ (d) 1PQ+HGC 

Fig. 4. Heat-conduction problem with boundary condition (T = 1-x) at y=0 and (T = 1-y) at x=0: solutions with (a) 2PQ, (b) 

AI, (c) 1PQ without HGC and (d) 1PQ with HGC. 

 

 
(a) θ ≈ 60

o
 (b) θ ≈ 45

o 
Fig. 5. Heat conduction problem in a skewed domain 
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Fig. 6. Solutions of the heat conduction problem in a skewed domain 
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contribute much to the total computation time, two-point 

quadrature can be used in their calculation for such problems. 

In this regard, the study suggests that an important advantage 

of 1PQ over AI is that it allows the selective use of 2PQ and 

1PQ with minor modifications to existing finite-elements 

codes that use the standard 2PQ. 
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