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Abstract: The objective of this work is to provide analytical solution of the conservation equations governing the 

desiccant wheel. The conservation equations describing the moisture exchange between wheel matrix and airflows 

are complicated partial differential equations (PDEs). This complication is brought about by space and time 

variations of moisture content.  In this work conservation equations of moisture in the matrix and in airflow were 

solved using the method of successive transformation of variables. In this process the complicated PDEs were 

reduced to an ordinary Bessel differential Eq. of the type 0 xfffx ; which has a general solution of 

)()()( 0201 xKCxICxf  . The analytical solution has facilitated exact determination of moisture distribution in the 

matrix and in supply and regeneration airflows. It can also be used to accurately predict the wheel performance 

parameters such as moisture removal and latent effectiveness. In addition provision of analytical solution to the 

problem has made significant contribution to the understanding of the complicated desiccant wheel operation 

principles. 
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1. INTRODUCTION 

 

Desiccant wheels are included in most heating, ventilation 

and air reconditioning (HVAC) designs for commercial 

buildings. The desiccant wheel consists of a circular wheel, 

called matrix, driven by a motor. The matrix has porous 

channels. The channels can be of different configurations 

parallel surfaces, equilateral triangle, square, hexagonal, 

circular or corrugated geometry [cf. Fig. (1)]. The matrix may 

be made of metal coated with molecular sieves or silica gel or 

paper impregnated with lithium chloride. The matrix is 

usually has a large mass transfer area per unit volume e.g. 

4000 m
2
/m

3
 and large number of channels per surface area of 

the face e.g. 40,000 channels/m
2 
1. The wheel is divided 

into two parts one for process air and the other for the 

regeneration air. Water vapor of the process air is adsorbed 

and stored in the matrix. As the wheel rotates to the 

regeneration side the adsorbed water vapor is driven off by 

the hot regeneration air.  

 

Many attempts have been made to predict the desiccant wheel 

performance parameters’ such as moisture removal and latent 

effectiveness. Semi-empirical, numerical, and analytical 

approaches have been attempted.  Due to similarity between 

heat and mass transfer, the correlations developed for rotary 

regenerator are generally used to investigate desiccant wheel. 

Kays and London correlation for rotary regenerator is widely 

used to estimate the latent effectiveness of desiccant wheel. 

Simonson 2 and Simonson et al. 3 have further developed 

Kays and London 4 for latent effectiveness. Despite the 

simplicity of the differential equations, their solution has been 

proved to be challenging and performance of energy wheel 

was widely investigated numerically. A number of numerical 

solution attempts were reported in the literature. These 

include the works of Simonson 2,  Zheng and Worek 5, 

Klein et al. 6, Casas et al. 7 and Sphaier and Worek 8, to 

mention a few. However, there are a few attempts to make 

analytical solution of the conservation equations governing 

desiccant. Rabah and Mohamed 9 have assumed Henry’s 

law of moisture isotherm and time constant of moisture in the 

gas phase. Their solution produced latent effectiveness 

correlations with limited range of application. 

 

This work is intended is to develop a method of solution to 

the conservation equation governing the desiccant wheel. 

Mass conservation equations for the moisture in the desiccant 

and vapor in the gas phase will be written for each section of 

the wheel. The moisture distribution in both the matrix and 

vapor space will be specifies.  

 

2. ANALYTICAL MODEL 

 

The conservation equations for water vapor in the air and the 

desiccant wheel are written as respectively 2 : 
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Fig. 1. Desiccant wheel configuration; (a) face of entire wheel, (b) tube geometry cross-section 
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(2) 

hm is the convective mass transfer coefficient (m/s), X is 

moisture content per desiccant, As is the surface area of the 

desiccant channel and Av is the channel cross-sectional area 

(gas flow area), Ad is the desiccant cross-sectional area. u is 

the air velocity, ρvm  and ρv is moisture density at the air and 

desiccant matrix respectively. ρd is dry desiccant density.  t 

and x are time and space coordinates respectively. The 

subscript v and m stand for water vapor and matrix. 

 

The left hand side of Eq. (2) can be transformed using exact 

derivative as 
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Hence Eq. (2) becomes 
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(4) 

 

The next step we seek transformation of space and time 

coordinates into dimensionless coordinates. Introducing the 

following dimensionless variables for t and x as 10, 
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where to  is the period of exposure per cycle for the supply or 

generation air [s/cycle]. The time and spatial derivatives can 

be written for any dependent variable, y, as follows 2,  
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(7) 

 

With these transformation (Eqs 6 and 7) the conservation Eq. 

(1) becomes  
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Similarly Eq. (4) becomes 
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(9) 

Next we will introduce the dimensionless groups (NTU, Cro
*
)  

and space and time dimensionless parameters ζ and η 

respectively. 
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with these new variables given by Eq. (10), the differential 

Eqs (8-9) become, respectively, 
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vm in  Eqs  (11-12) yields 
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Eq. (13) is known as Nusselt Eq. in the literature. In fact all 

analytical solutions of the conservation Eqs ended at Eq. (13). 

Most of the numerical solution of desiccant wheel are the 

numerical solution of Eq. (13). The contribution of this works 

starts from Eq. (13) on. 

Now ρv will be transformed into a variable X as  

 
  Xev  (14) 

 

Insertion of Eq. (14) into Eq. (13) yields Eq. (15) 
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Eq. 15 can be solved using Laplace transformation; however, 

it is a lengthy and complicated procedure. Here we try to 

introduce a novel route for the solution of (15) by continuing 

the method of transformation of variables. Because of the 

chain of transformations, ρ (x, t)→

 

ρ (ζ,η)→X(ζ,η)→f (β) we 

called this method “successive transformation of variables”. 

The last ring in this chain is the following transformation of 

variables 

 

    fX ,  (16) 

where 

 2  (17) 

With the transformation given by Eqs (16-17), Eq. (15) is 

reduced to an ordinary differential Eq. as 

 

0 fff   (18) 

 
Eq. (18) can be recognized as a standard form of ordinary 

Bessel differential Eq., which has the general solution of 

 

      oo KCICf 21   (19) 

 

where Io and Ko are modified Bessel functions of the first and 

second kind and zero order, respectively, and C1 and C2 are 

constants. In fact this is an interesting development in the 

solution of the conservation Eqs of the desiccant wheel. The 

last transformation step is not only reducing the tedious 

procedures of using Laplace transformation, namely the 

inverse Laplace transformation, but it is a simple, clear and 

straightforward and hence educational step. Transforming Eq. 

(19) backwards we get 

 

      22. 21 oo KCICX   (20) 

The determination of the constant C1 and C2 of Eq. (20) 

depends on the boundary conditions. For example if the initial 

boundary condition is ζ = 0 (x = 0) and  the density is finite 

then  
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With Ko(0)=∞ ,  C2 = 0. Hence (21) reduces to 
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Again transforming backward to vapor density we get 
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Eq. (23) is an impulse function. Using the principles of 

convolution, Eq. (23) becomes  

 

 

 

Fig.  2. Moisture distribution (blue:  Φ=1, black: Φ=x, red: Φ=x
2
) 
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More details on the convolution integral are found in Rabah 

and Kabelac 11.  The nature of the function Φ depends on 

the boundary conditions. Knowing the moisture distribution, 

the wheel performance parameters such moisture removal and 

latent effectiveness can be determined.  

 

Fig. 2 shows the moisture distribution in the desiccant wheel 

for wide range of  values and  function. Experimental data 

on local measurement of moisture on the wheel is not 

available and is extremely difficult (if not impossible) to 

measure. Nevertheless the trend of moisture profile is 

correctly predicated as attested by the experimental data of 

Rabah et al. 12.  

 

3. CONCLUSIONS 

 

Mass conservation equations for the moisture in the desiccant 

and water vapor in the gas were solved analytical. The 

solution was straightforward, producing equation for moisture 

distribution.  
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Nomenclature 

Roman Greek symbols Superscripts 

A  Heat transfer area 

(m2) 
ρ  Density 

(kg/m
3
) 

* Normalized 

hm  Mass transfer 

coefficient (m/ s) 
 
η 

Function (-) 

Parameter (-) 

O Degree 

L  Length (m)  Parameter (-)   

NTU  Number of 

transfer units (-) 
Subscripts  

t  Time (s) d Desiccant   

u  Velocity (m/s) m Matrix   

X  Moisture in the 

desiccant (kg/kg) 

v vapor   

 

  


