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Abstract: The objective of this work is to provide analytical solution of the conservation equations governing the
desiccant wheel. The conservation equations describing the moisture exchange between wheel matrix and airflows
are complicated partial differential equations (PDEs). This complication is brought about by space and time
variations of moisture content. In this work conservation equations of moisture in the matrix and in airflow were
solved using the method of successive transformation of variables. In this process the complicated PDEs were
reduced to an ordinary Bessel differential Eq. of the type xf”+ f'—xf =0 ; which has a general solution of

f(x) =C;1y(x) + C,Ky(x) . The analytical solution has facilitated exact determination of moisture distribution in the

matrix and in supply and regeneration airflows. It can also be used to accurately predict the wheel performance
parameters such as moisture removal and latent effectiveness. In addition provision of analytical solution to the
problem has made significant contribution to the understanding of the complicated desiccant wheel operation

principles.
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1. INTRODUCTION

Desiccant wheels are included in most heating, ventilation
and air reconditioning (HVAC) designs for commercial
buildings. The desiccant wheel consists of a circular wheel,
called matrix, driven by a motor. The matrix has porous
channels. The channels can be of different configurations
parallel surfaces, equilateral triangle, square, hexagonal,
circular or corrugated geometry [cf. Fig. (1)]. The matrix may
be made of metal coated with molecular sieves or silica gel or
paper impregnated with lithium chloride. The matrix is
usually has a large mass transfer area per unit volume e.g.
4000 m?/m® and large number of channels per surface area of
the face e.g. 40,000 channels/m® [1]. The wheel is divided
into two parts one for process air and the other for the
regeneration air. Water vapor of the process air is adsorbed
and stored in the matrix. As the wheel rotates to the
regeneration side the adsorbed water vapor is driven off by
the hot regeneration air.

Many attempts have been made to predict the desiccant wheel
performance parameters’ such as moisture removal and latent
effectiveness. Semi-empirical, numerical, and analytical
approaches have been attempted. Due to similarity between
heat and mass transfer, the correlations developed for rotary
regenerator are generally used to investigate desiccant wheel.
Kays and London correlation for rotary regenerator is widely
used to estimate the latent effectiveness of desiccant wheel.
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Simonson [2] and Simonson et al. [3] have further developed
Kays and London [4] for latent effectiveness. Despite the
simplicity of the differential equations, their solution has been
proved to be challenging and performance of energy wheel
was widely investigated numerically. A number of numerical
solution attempts were reported in the literature. These
include the works of Simonson [2], Zheng and Worek [5],
Klein et al. [6], Casas et al. [7] and Sphaier and Worek [8], to
mention a few. However, there are a few attempts to make
analytical solution of the conservation equations governing
desiccant. Rabah and Mohamed [9] have assumed Henry’s
law of moisture isotherm and time constant of moisture in the
gas phase. Their solution produced latent effectiveness
correlations with limited range of application.

This work is intended is to develop a method of solution to
the conservation equation governing the desiccant wheel.
Mass conservation equations for the moisture in the desiccant
and vapor in the gas phase will be written for each section of
the wheel. The moisture distribution in both the matrix and
vapor space will be specifies.

2. ANALYTICAL MODEL

The conservation equations for water vapor in the air and the
desiccant wheel are written as respectively [2] :
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Fig. 1. Desiccant wheel configuration; (a) face of entire wheel, (b) tube geometry cross-section
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h,, is the convective mass transfer coefficient (m/s), X is
moisture content per desiccant, A is the surface area of the
desiccant channel and A, is the channel cross-sectional area
(gas flow area), A4 is the desiccant cross-sectional area. u is
the air velocity, pym and py is moisture density at the air and
desiccant matrix respectively. pqyis dry desiccant density. t
and x are time and space coordinates respectively. The
subscript v and m stand for water vapor and matrix.

The left hand side of Eq. (2) can be transformed using exact
derivative as

6X vm ax vm apvm

ot opyy, ot ®3)
Hence Eq. (2) becomes
Xum | 9Pum A
[pdAd apva ot m L (pv pvm) ( )

The next step we seek transformation of space and time
coordinates into dimensionless coordinates. Introducing the
following dimensionless variables for t and x as [10],

)

where t, is the period of exposure per cycle for the supply or
generation air [s/cycle]. The time and spatial derivatives can
be written for any dependent variable, y, as follows [2],
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With these transformation (Eqs 6 and 7) the conservation Eq.
(1) becomes

UA, py A

L 5X* = mT( vm_pv) (8)
Similarly Eq. (4) becomes
oX \op
(ijd ap“j atf:’ =hm%(pv—pvd) 9)
0 vd

Next we will introduce the dimensionless groups (NTU, Cr,")
and space and time dimensionless parameters  and n
respectively.
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with these new variables given by Eq. (10), the differential
Egs (8-9) become, respectively,
opy
o¢

= Pvm ~ Py (11)
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0
Pun = Pv ~ Pvm (12
on
Elimination of Oy, in Eqs (11-12) yields
2
a pv apv +6pv — (13)
onog  on  0g

Eq. (13) is known as Nusselt Eq. in the literature. In fact all
analytical solutions of the conservation Eqs ended at Eq. (13).
Most of the numerical solution of desiccant wheel are the
numerical solution of Eq. (13). The contribution of this works
starts from Eqg. (13) on.

Now p, will be transformed into a variable X as

py=Xe =7 (14)
Insertion of Eq. (14) into Eq. (13) yields Eg. (15)
2
Xy (15)
onog

Eg. 15 can be solved using Laplace transformation; however,
it is a lengthy and complicated procedure. Here we try to
introduce a novel route for the solution of (15) by continuing
the method of transformation of variables. Because of the
chain of transformations, p (x, t)— p ({n)—X({En)—f (B) we
called this method “successive transformation of variables”.
The last ring in this chain is the following transformation of
variables

X(&n)=1(B) (16)
where

B (17)

With the transformation given by Eqgs (16-17), Eq. (15) is
reduced to an ordinary differential Eq. as
s+ —-p=0 (18)
Eqg. (18) can be recognized as a standard form of ordinary
Bessel differential Eg., which has the general solution of
£(B8)=Culo(8)+CoK,(8) (19)
where |, and K, are modified Bessel functions of the first and
second kind and zero order, respectively, and C, and C, are
constants. In fact this is an interesting development in the
solution of the conservation Egs of the desiccant wheel. The
last transformation step is not only reducing the tedious
procedures of using Laplace transformation, namely the
inverse Laplace transformation, but it is a simple, clear and

straightforward and hence educational step. Transforming Eqg.
(19) backwards we get

X(?-U) = Cll 0 (2\/5)"'(:2 Ko (2\/5)
The determination of the constant C, and C, of Eq. (20)
depends on the boundary conditions. For example if the initial
boundary condition is {= 0 (x = 0) and the density is finite
then

(20)

X(£047) = C11,(0)+ C,K, (0) (21)
With Ky(0)=0, C, =0. Hence (21) reduces to
X(&7)=Cill2Vén) 22)
Again transforming backward to vapor density we get
pu = Cul,(2En (23)

Eqg. (23) is an impulse function. Using the principles of
convolution, Eq. (23) becomes
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Fig. 2. Moisture distribution (blue: ®=1, black: ®=x, red: ®=x?)
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¢
puEm) =e 57 [ [2nlE- D (24)
0
More details on the convolution integral are found in Rabah
and Kabelac [11]. The nature of the function ® depends on
the boundary conditions. Knowing the moisture distribution,
the wheel performance parameters such moisture removal and
latent effectiveness can be determined.

Fig. 2 shows the moisture distribution in the desiccant wheel
for wide range of & values and @ function. Experimental data
on local measurement of moisture on the wheel is not
available and is extremely difficult (if not impossible) to
measure. Nevertheless the trend of moisture profile is
correctly predicated as attested by the experimental data of
Rabah et al. [12].

3. CONCLUSIONS

Mass conservation equations for the moisture in the desiccant
and water vapor in the gas were solved analytical. The
solution was straightforward, producing equation for moisture
distribution.
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Nomenclature

Roman Greek symbols Superscripts

A Heat transferarea  p  Density * Normalized
(m?) (kg/m®)

hm Mass transfer @& Function (-) O Degree

coefficient (m/s) »  Parameter (-)

L Length (m) ¢  Parameter (-)
NTU  Number of Subscripts
transfer units (-)
t Time (s) d  Desiccant
u Velocity (m/s) m  Matrix
X Moisture inthe v vapor

desiccant (kg/kg)
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