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Abstract: Proper Orthogonal Decomposition (POD) eigenfunctions have many useful applications in the analysis of 
turbulent shear flows, e.g., reconstruction of flow statistics, investigation of coherent structures, basis for low 
dimensional modelling (LDM), and flow control. The major shortcoming of POD method and its implementation to 
LDM and flow control is the dependence of POD basis on the flow parameters and geometry from which they were 
extracted. The paper develops a proposal for a model of energetic-structures in which the cross-spectral tensor is 
determined from the solution of spectral equations. The obtained energetic-structures are similar to those observed in 
experiments or extracted from numerical simulations data. 
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1. INTRODUCTION 
 
Because of its simple geometry, fully developed channel flow 
Fig. 1 has been investigated extensively both numerically and 
experimentally. The quantitative analysis of turbulent flows 
utilizing proper orthogonal decomposition has been an active 
area of research in the last 20 years. Most of works have 
concentrated on the analysis of time series data from 
laboratory experiments or numerical simulations. The main 
objectives are of two folds; reconstruction of coherent 
structures and extraction of optimal basis for low dimensional 
modelling (LDM). Early application of POD to wall bounded 
flows was reported by Herzog [1], he extracted an optimal 
POD basis which was later used by Aubry et al. [2] to 
construct a 10-D low dimensional model for a sub domain in 
the wall-normal direction 0 ൑ ାݕ ൑ 60 . Herzog’s work on 
POD and Aubry’s work on LDM were continued by Moin and 
Moser [3], Berkooz et al. [4], Poje and Lumley [5], Prabhu et 
al. [6], and Smith et al. [7].   
 
The major shortcoming of POD method and its 
implementation to LDM is the dependence of POD basis on 
the flow parameters and geometry from which they were 
extracted. However, successful works in kinetic energy 
analysis, extraction of coherent structures, and low 
dimensional description of near-wall turbulence are reported 
continuously. The reader is referred to Lumley [8-10], 
Sirovich [11], and Holmes et al. [12] for more details. 
 
 

Fig. 1. Sketch of the flow geometry 

 
2. PROPER ORTHOGONAL DECOMPOSITION 

 
Suppose we have a random velocity field, ݑ௜ሺ·ሻ. We seek to 
find a deterministic vector field ߶௜ሺ·ሻ which has the maximum 
projection on our random vector fieldݑ௜ ; in a mean square 
sense. We would like to find a whole new deterministic field 
represented by ߶௜ሺ·ሻfor which ൏ ଶ|ߙ| ൐ൌ൏ ௜ሺ·ሻ߶௜ݑ|

ሺ·ሻ|ଶכ ൐ is 
maximized, i.e. 

 
 

(1) 
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          (2) 

 
where ߣ ൌ൏ ଶ|ߙ| ൐. So, if ߶௜ሺ·ሻ maximize (2), it means that if 
the flow field is "projected" along ߶௜ሺ·ሻ, the average energy 
content (ߣ) is larger than if the flow field is projected  along 
any other mathematical structure, e.g. a Fourier mode. In the 
space orthogonal to this ߶௜ሺ·ሻ the maximization process can 
be repeated, and in this way a whole set of orthogonal 
functions ߶௜ሺ·ሻ  can be determined. This method is called 
proper orthogonal decomposition, or POD. The power of POD 
lies in the fact that the decomposition of the flow field in the 
POD eigenfunctions converge optimally fast in ܮଶ-sense. Most 
importantly, the decomposition is based on the flow field 
itself,. If the flow field is inhomogeneous of finite extent, then 
Hilbert-Scmidt theory applies and the obtained eigenfunctions 
are empirical, while if the flow field is homogenous or 
periodic of infinite extent the eigenfunctions are analytical 
(sines and cosines). 
 
A necessary condition for ߶௜ሺ·ሻ to maximize expression (2) is 
that it is a solution of the following Fredholm integral 
equation of the second type 
 

                                       (3) 

 
where, ܴ௜௝  is the space-correlation tensor. We can use the 
eigenfunction as a basis for the flow field.  
 

                                                       (4) 

 
The random coefficients ܽ௡ are determined by projection back 
onto the velocity field i.e., 
 

                                                       (5) 

 
They are uncorrelated and their mean values are the 
eigenvalues ߣ  
 

                                                            (6) 
 
The eigenvalues are ordered (meaning that the lowest order 
eigenvalue is bigger than the next, and so on); i.e, ߣଵ  ൐ ଶߣ  ൐
ଷߣ   ···.  Thus the representation is optimal in the sense that are 
very few of terms are required to capture the energy. 
 
For flows which are, periodic in stream-wise direction ݔ , 
homogenous in cross-stream direction ݖand inhomogeneous 
bounded in wall-normal direction ݕ . Fourier transforming 
equations (3) in ݔ  and ݖ  directions, space correlation tensor 
ܴ௜௝ሺݔ, ݔ ′, ,ݕ ݕ ′, ,ݖ ݖ ′ሻ becomes cross spectra tensor 

௜ܵ௝ሺݕ, ݕ ′, ݇ଵ, ݇ଷሻ and equations (3) can be rewritten as follows: 
 

                        (7) 

 
Solving these equations numerically, if ௜ܵ௝ is known, for each 
pair of wave numbers yields POD eigenfunctions ߶௜ሺ·ሻ and 
eigenspectra ߣ. 
 
3. GOVERNING EQUATIONS 
 
Momentum equations: 
 

                                        (8) 

 
The equation for the averaged momentum: 
 

                         (9) 

 
Fluctuation equations: 

         (10) 

 
Two-point Correlation Equations: 
 
Multiplying equations (10) by  and averaging yields: 
 

       
 (11) 

 
Rewriting equations (10) for the free index ( ), multiplying by 

 and averaging yields: 
 

         (12) 

 
Since  is independent of  and  is independent of  
 

         (13) 

 

         (14) 

 
Equations (13) and (14) can be added together to yield an 
equation for the two-point correlation as follows: 
 

                                                                     (15) 
 
Replacing the velocity correlations  by  and velocity-
pressure correlations ,  by ,  yields:  
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                                                                     (16) 
 
For a fully developed channel flow, scaling equations (16) 
above by , , and  gives: 
 

                                                                     (17) 
 
The flow is homogenous in  and , this means that the two-
point moments can only depend on  and

. Define new variables; and
, then change variables from  to  and 

from  to . The chain-rule implies that: 
 

                                       (18) 

And 

                                       (19) 

 
Similarly, it is easy to show that: 
 

                                       (20) 

And 

                                       (21) 

 
Equations (17) become: 
 

   

                                                                                   (22) 
 
 
 
 
 
 
 
 

Fourier transforming in horizontal directions 
 

                                                                                  (23) 
Equations (23) is not valid when . However, one can 
drive a valid equation for this case starting from equations 
(11) and (12) above as follows;  
Since  is independent of  and  is independent of

, equations (11) and (12) become: 
 

                           (24) 
 

                           (25) 
 
Equations (24) and (25) can be added together to yield an 
equation for the two-point correlation as follows: 
 

                          (26) 
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For a fully developed channel flow: 

                           (27) 
The flow is homogenous in  and . This means that the two-
point moments can only depend on  and

. 

 

                         (28) 
 
Rearranging the terms yields: 
 

 

                         (29) 
Fourier transforming in horizontal directions: 
       

                                                  (30) 

Continuity equation implies that: 
 

                      (31) 

 
The doubly Fourier transformed random velocity component,

, can be reconstructed from the POD eigenfunctions as 
follows: 

                                      (32) 

The random coefficients   are uncorrelated and POD 
eigenfunctions  are orthogonal. 
 

                                                     (33)
    

                  (34)  

 

                        (35) 

 

                          (36)          
 
4. CLOSURE MODELS  
 
Equations (23), (30) and (31) form a set of equations that can 
be solved to obtain the two-point cross-spectra terms, , for 
each pair of wave-numbers . However, these equations 
are not closed, i.e., the unknowns are more than the equations 
we have. The set of equations can be closed using the 
following closure solutions:  
 

                                  (37) 
 

         (38) 

 

          (39) 

 

         (40) 

 

                                       (41) 
 

        (42) 

 

        (43) 
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            (44) 

 
                  (45)                                         

 

                                      (46) 
 

                                              (47) 

 

                         (48) 

 

                                                     (49) 

 
5. NUMERICAL SOLUTION 
 
Fig. 1 shows a sketch of the flow geometry. The flow is driven 
by constant pressure gradient in the stream-wise direction 
which is balanced by wall friction stress on both walls. 
Therefore, the flow is homogeneous in the stream-wise and 
cross-stream directions. In additions, the statistics are 
dependent only on the distance from the wall. Since the flow 
is stationary in time, time derivatives are ignored. The 
computational domain was chosen to be

. Where is similar to that of DNS, and 
divided into  grid points, in the stream-
wise, wall-normal, and cross-stream directions, respectively. 
The size of the domain and the grid distribution are used to 
determine the wave-numbers ( ) in the stream-wise and 
cross-stream directions.  
 
Since the flow is symmetric in the wall-normal direction, the 
computation was carried out for half of the channel, from one 
wall to the channel center line.  
 
The following boundary conditions were used at the channel 
center line:  
 

,     ,     ,      

 

,     ,     ,      

 

 

 
The following symmetry conditions were used: 

,      ,      
 

,     ,      
 
Where, the superscript  denotes transpose. 

Equations (23), (30) and (31) were discretized and solved for 
each pair of wave-numbers, assuming that the mean velocity 
profile is known, using the following algorithm: 
 
1. Initial guess of eigenfunctions ( ) and eigenvalue 

( ).  
 
2. and other closure terms are calculated 

utilizing the eigenfunctions ( ), eigenvalue ( ) 
and symmetry conditions.  

 
3. Equations (23), (30) and (31) are solved for  and . 
 
4. The obtained  from step 3 is used to solve POD 

eigenvalue problem, equation (7), and to get a new set of 
eigenfunctions  ( ) and eigenvalue ( ). 

 
5. Steps 2, 3 and 4 are repeated till convergence.  

Fig. 2. Stream-wise POD eigenfunction component,   
extracted from DNS data,       calculated using current method. 

Fig. 3. Wall-normal POD eigenfunction component,  
extracted from DNS data,       calculated using current method. 
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Fig. 4. Isosurface of stream-wise vorticity reconstructed using 
POD eigenfunctions that was extracted from DNS data, red 

 and blue . 

Fig. 5. Isosurface of stream-wise vorticity reconstructed using 
POD eigenfunctions that was calculated using current method, 
red  and blue . 

6. CONCLUSIONS  

In this paper we have developed an analytical procedure for 
extracting basis functions which approximate those given by 
POD method (POD eigenfunctions). The POD method 
requires cross-spectral tensor ( ) as the kernel of its 
eigenvalue problem. Thus necessitating complete information 
of the flow before the analysis can proceed. For flows with 
very high Reynolds number, it can be expensive if not 
impossible with the current computational and experimental 
capabilities. However, in this method the cross-spectral tensor 
( ) is determined from the solution of Fourier transformed 
two-point correlation equations. POD eigenfuctions that was 
 

extracted from DNS data and the basis functions that was 
calculated using the current method for stream-wise ( ) and 
wall-normal ( ) are similar to each other as shown in Figs 2 
and 3 above. However, there are some discrepancies away 
from the wall. These discrepancies are due to the energy 
transfer model, ,  especially the cross-stream component.  
Reconstruction of near wall coherent structures using 
calculated basis functions have given smoother structures 
compared to those reconstructed using POD eigenfunctions as 
shown in Figs 4 and 5. Again, this is due to the 
underestimation of the cross-stream energy transfer model. 
This method can be further developed to be a model for 
turbulence by solving the mean momentum equation 
iteratively for the model input (mean velocity).    
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