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Abstract: Proper Orthogonal Decomposition (POD) eigenfunctions have many useful applications in the analysis of
turbulent shear flows, e.g., reconstruction of flow statistics, investigation of coherent structures, basis for low
dimensional modelling (LDM), and flow control. The major shortcoming of POD method and its implementation to
LDM and flow control is the dependence of POD basis on the flow parameters and geometry from which they were
extracted. The paper develops a proposal for a model of energetic-structures in which the cross-spectral tensor is
determined from the solution of spectral equations. The obtained energetic-structures are similar to those observed in

experiments or extracted from numerical simulations data.
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1. INTRODUCTION

Because of its simple geometry, fully developed channel flow
Fig. 1 has been investigated extensively both numerically and
experimentally. The quantitative analysis of turbulent flows
utilizing proper orthogonal decomposition has been an active
area of research in the last 20 years. Most of works have
concentrated on the analysis of time series data from
laboratory experiments or numerical simulations. The main
objectives are of two folds; reconstruction of coherent
structures and extraction of optimal basis for low dimensional
modelling (LDM). Early application of POD to wall bounded
flows was reported by Herzog [1], he extracted an optimal
POD basis which was later used by Aubry et al. [2] to
construct a 10-D low dimensional model for a sub domain in
the wall-normal direction0 < y* < 60. Herzog’s work on
POD and Aubry’s work on LDM were continued by Moin and
Moser [3], Berkooz et al. [4], Poje and Lumley [5], Prabhu et
al. [6], and Smith ez al. [7].

The major shortcoming of POD method and its
implementation to LDM is the dependence of POD basis on
the flow parameters and geometry from which they were
extracted. However, successful works in Kkinetic energy
analysis, extraction of coherent structures, and low
dimensional description of near-wall turbulence are reported
continuously. The reader is referred to Lumley [8-10],
Sirovich [11], and Holmes et al. [12] for more details.

31

Fig. 1. Sketch of the flow geometry

2. PROPER ORTHOGONAL DECOMPOSITION
Suppose we have a random velocity field, u;(+). We seek to
find a deterministic vector field ¢;(-) which has the maximum
projection on our random vector fieldu;; in a mean square
sense. We would like to find a whole new deterministic field
represented by ¢;(-)for which < |a|? >=< |u; ()] ()|? > is
maximized, i.e.
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where 1 =< |a|? >. So, if ¢;(-) maximize (2), it means that if
the flow field is "projected” along ¢;(-), the average energy
content (4) is larger than if the flow field is “projected” along
any other mathematical structure, e.g. a Fourier mode. In the
space orthogonal to this ¢;(-) the maximization process can
be repeated, and in this way a whole set of orthogonal
functions ¢;(-) can be determined. This method is called
proper orthogonal decomposition, or POD. The power of POD
lies in the fact that the decomposition of the flow field in the
POD eigenfunctions converge optimally fast in L?-sense. Most
importantly, the decomposition is based on the flow field
itself,. If the flow field is inhomogeneous of finite extent, then
Hilbert-Scmidt theory applies and the obtained eigenfunctions
are empirical, while if the flow field is homogenous or
periodic of infinite extent the eigenfunctions are analytical
(sines and cosines).

A necessary condition for ¢;(-) to maximize expression (2) is

that it is a solution of the following Fredholm integral
equation of the second type

[ R, = st ®

where, R;; is the space-correlation tensor. We can use the
eigenfunction as a basis for the flow field.
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The random coefficients a,, are determined by projection back
onto the velocity field i.e.,

(4)
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They are uncorrelated and their mean values are the
eigenvalues 4

)\n =< GnQy > 6nm (6)
The eigenvalues are ordered (meaning that the lowest order
eigenvalue is bigger than the next, and so on); i.e, 4, > 4, >

A3 ---. Thus the representation is optimal in the sense that are
very few of terms are required to capture the energy.

For flows which are, periodic in stream-wise directionx,
homogenous in cross-stream direction zand inhomogeneous
bounded in wall-normal directiony . Fourier transforming
equations (3) in x and z directions, space correlation tensor
Rij(x,x,y,y,z2z) becomes cross spectra  tensor
Sij 7,y ', k4, k3) and equations (3) can be rewritten as follows:

/ Stk U )ik, WY = Nk Dy (9) )
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Solving these equations numerically, if S;; is known, for each
pair of wave numbers yields POD eigenfunctions ¢;(-) and
eigenspectra A.

3. GOVERNING EQUATIONS

Momentum equations:

ou; . Ou; 1dp 8?u;
[ T ©
The equation for the averaged momentum:
Wi | 00 _ _Lor O%U; Owmg ©)
ot d; pox; 92  Oxj
Fluctuation equations: )
8(;:+ : g;‘; = _%% y%—uj‘(;q;_uj gz; 5;;;:7 (10)
Two-point Correlation Equations:
Multiplying equations (10) by «;}, and averaging yields:
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Rewriting equations (10) for the free index (%), multiplying by
U; and averaging yields:

du ., Oy 1 0y oty —0U, , Ouy
T R R P P P
Since u; is independent of x’; and «}, is independent of ;
Ju; 8uu 10pu Pu, ——0U;  Jugulbu;
el k_ k i ]
U ot i O, p Ox; Ox 2 Wi 317 O (13)
A 1dp'u Pu, — U, Ou ugul
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Equations (13) and (14) can be added together to yield an
equation for the two-point correlation as follows:
(7’11,'u,r L1, Du;ul, iy T,OM _ _1@ - }(‘3}7'771@ Pudl ) VaQM B
ot dr; 7 o] p O, p O, g a7
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(15)

Replacing the velocity correlations w;u) by R and velocity-
pressure correlationspu;,, p’u; by R4k, Ri4 yields:
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For a fully developed channel flow, scaling equations (16)
above byUsx, 0, and ¥ gives:
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The flow is homogenous in = andz, this means that the two-
point moments can only depend on 7 =z —z and
r3 =2z —z . Define new variables; & =2+« and
&3 = 2/ + z, then change variables from («/, ) to (£1,71) and
from (2, z) to(&3, 3). The chain-rule implies that:

0 _90 .0 18
o = o5 o 18)
And
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Similarly, it is easy to show that:
0o_0,2 20
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Equations (17) become:
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Fourier transforming in horizontal directions
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Equations (23) is not valid when y = v'. However, one can
drive a valid equation for this case starting from equations
(11) and (12) above as follows;

Since u; is independent of z'&2z’ and wj, is independent of
x&z, equations (11) and (12) become:
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Equations (24) and (25) can be added together to yield an
equation for the two-point correlation as follows:
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Fora fuIIy developed channel flow:
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The flow is homogenous in = and z. This means that the two-
point moments can only depend on 7 =z —2 and

rg =z’ — z.
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Rearranging the terms yields:
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Fourier transforming in horizontal directions:
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Continuity equation implies that:

05 | 05,

[)y + ay =1k [Slk - zl] + th[S?;k - Sm] (31)

The doubly Fourier transformed random velocity component,

ﬁi(y, t), can be reconstructed from the POD eigenfunctions as
follows:

iify.t) = Y ™00y (32)
n=1
The random coefficients &™) are uncorrelated and POD

eigenfunctions ¢! are orthogonal.
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4. CLOSURE MODELS

Equations (23), (30) and (31) form a set of equations that can
be solved to obtain the two-point cross-spectra terms,S;x, for
each pair of wave-numbers (k1, k3). However, these equations
are not closed, i.e., the unknowns are more than the equations
we have. The set of equations can be closed using the
following closure solutions:

i (Y ') = iy (y)uis (y) (37)
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5. NUMERICAL SOLUTION

Fig. 1 shows a sketch of the flow geometry. The flow is driven
by constant pressure gradient in the stream-wise direction
which is balanced by wall friction stress on both walls.
Therefore, the flow is homogeneous in the stream-wise and
cross-stream directions. In additions, the statistics are
dependent only on the distance from the wall. Since the flow
is stationary in time, time derivatives are ignored. The
computational domain was chosen to be
15.3h x 2h x 7.68h. Where is similar to that of DNS, and
divided into 256 x 129 x 256 grid points, in the stream-
wise, wall-normal, and cross-stream directions, respectively.
The size of the domain and the grid distribution are used to
determine the wave-numbers (%1, k3) in the stream-wise and
cross-stream directions.

Since the flow is symmetric in the wall-normal direction, the
computation was carried out for half of the channel, from one
wall to the channel center line.

The following boundary conditions were used at the channel
center line:

a5

951,
- S12=0 13 _ So1 =0
9 0, 12 T 0, 21
afg” =0, S23=0, 95 _ 0, S32=0
dy Ay
dSSS
dy
The following symmetry conditions were used:
T T T
Sz1 = S12 S31 = 513", 32 = o3
T T T
Sy = 514", Saz =521, Si3= 53

Where, the superscript 7" denotes transpose.

Equations (23), (30) and (31) were discretized and solved for
each pair of wave-numbers, assuming that the mean velocity
profile is known, using the following algorithm:

1. Initial guess of eigenfunctions (¢1. ¢2, #3) and eigenvalue

).

2. Sk, A, S k. Sijeand other closure terms are calculated
utilizing the eigenfunctions (&1, ¢2, ¢3), eigenvalue ()
and symmetry conditions.

3. Equations (23), (30) and (31) are solved for Six and Sia4.
4. The obtained S;; from step 3 is used to solve POD
eigenvalue problem, equation (7), and to get a new set of

eigenfunctions (¢1, ¢2, ¢3) and eigenvalue ().

5. Steps 2, 3 and 4 are repeated till convergence.

Fig. 2. Stream-wise POD eigenfunction component,
extracted from DNS data,— calculated using current method.
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Fig. 3. Wall-normal POD eigenfunction component, —o—
extracted from DNS data,— calculated using current method.
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Fig. 4. Isosurface of stream-wise vorticity reconstructed using
POD eigenfunctions that was extracted from DNS data, red
+wve and blue —ve.

Fig. 5. Isosurface of stream-wise vorticity reconstructed using
POD eigenfunctions that was calculated using current method,
red +ve and blue —ve.

6. CONCLUSIONS

In this paper we have developed an analytical procedure for
extracting basis functions which approximate those given by
POD method (POD eigenfunctions). The POD method
requires cross-spectral tensor (.5;;) as the kernel of its
eigenvalue problem. Thus necessitating complete information
of the flow before the analysis can proceed. For flows with
very high Reynolds number, it can be expensive if not
impossible with the current computational and experimental
capabilities. However, in this method the cross-spectral tensor
(S:5) is determined from the solution of Fourier transformed
two-point correlation equations. POD eigenfuctions that was
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extracted from DNS data and the basis functions that was
calculated using the current method for stream-wise (¢:) and
wall-normal (¢2) are similar to each other as shown in Figs 2
and 3 above. However, there are some discrepancies away
from the wall. These discrepancies are due to the energy
transfer model, S; i, especially the cross-stream component.
Reconstruction of near wall coherent structures using
calculated basis functions have given smoother structures
compared to those reconstructed using POD eigenfunctions as
shown in Figs 4 and 5. Again, this is due to the
underestimation of the cross-stream energy transfer model.
This method can be further developed to be a model for
turbulence by solving the mean momentum equation
iteratively for the model input (mean velocity).
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