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Abstract: Fluid flow around a NACA 4412 airfoil in a wind tunnel test section at Reynolds number of 3 x 106, 
based on the chord of the airfoil (150 mm) and free stream velocity (30 m/s), is considered. The study covers the 
boundary layers around the airfoil and the wake region at different angles of attack. Different turbulence models 
are used to predict separated flows over the airfoil. Two-equation turbulence models, k-ω and k-ε, and Reynolds 
Stress Model are tested for the ability to predict boundary layer separation on the airfoil. Reynolds Stress model 
captured the physics of separated flow favourably, and gave a very realistic evolution of the vortex formed due to 
separation. Statistics of the flow which is generated by RSM are in good agreement with an existing wind tunnel 
experimental data. The flow field which is generated by the two-equation turbulence models poorly predicted 
flow separation and vortex dynamics and consequently overestimated the lift coefficient for angles of attack 
larger than the critical angle of attack. 
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INTRODUCTION 
 
Turbulent boundary layer separation from a surface is an 
important problem as it is responsible for setting an upper 
limit to the performance of aerodynamic devices. The 
maximum performance occurs near to the separation 
conditions. 

1.1 Turbulence Models 

Turbulence modelling is a key issue in most CFD 
simulations. All practical engineering flows are turbulent and 
hence need to be modelled. 

RaNS-based turbulence models 

The smart Reynolds decomposition has left us with the so 
called closure problem which means that the number of 
unknowns is greater than the number of equations; the 
additional unknowns are the Reynolds stresses which have to 
be modelled. For incompressible turbulent flow, all variables 
are divided into a mean part (time averaged) and fluctuating 
part. For the velocity vector this means that 𝑢𝑢�𝑖𝑖  is divided into 
a mean part 𝑈𝑈𝑖𝑖  and a fluctuating part 𝑢𝑢𝑖𝑖  so that 𝑢𝑢�𝑖𝑖 = 𝑈𝑈𝑖𝑖 + 𝑢𝑢𝑖𝑖 . 
Time averaging yields: 
 
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0                                                                                  (1) 
 
𝑈𝑈𝑗𝑗

𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜈𝜈 𝜕𝜕2𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗 2 −

𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

                                                (2)      

where the turbulent stress tensor (also called Reynolds stress 
tensor)  is given by: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗�����                                                                              (3) 

Two equation turbulence models 
Two equations turbulence models include two additional 
transport equations (turbulent kinetic energy k-equation and 
turbulent dissipation ε -equation) to represent the turbulent 
properties of the flow. This allows the turbulence model to 
account for convection and diffusion of turbulent energy. 

The k equation 

The turbulent kinetic energy is the sum of all normal 
Reynolds stresses. 
 
𝑘𝑘 = 1

2
�𝑢𝑢1

2 + 𝑢𝑢2
2 + 𝑢𝑢3

2�                                                           (4) 
 
k-equation is derived directly by setting the indices i = j in the 
equation that govern the Reynolds stresses, i.e. 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗���

= −𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗�����
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗�����

− 𝜈𝜈
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗�������

− 

                      𝐶𝐶                     𝑃𝑃                   𝜀𝜀 
 

      − 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢𝑗𝑗 �
𝑝𝑝
𝜌𝜌

+ 1
2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖���������������

+ 𝜈𝜈 𝜕𝜕2𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗�����

                         (5) 

                                       𝐷𝐷                       𝐷𝐷 𝑜𝑜𝑜𝑜 𝑘𝑘 
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where C denotes convection, P denotes turbulent production, 
𝜺𝜺denotes turbulent dissipation, and D denotes diffusion. The 
above equations can be symbolically written as follows: 
 
𝐶𝐶 = 𝑃𝑃 + 𝜀𝜀 + 𝐷𝐷                                                                      (6) 
 
The 𝜺𝜺 equation 

Two quantities are usually used in eddy-viscosity model to 
express the turbulent viscosity. In the  𝑘𝑘 –  𝜀𝜀 model, 𝑘𝑘 and 𝜀𝜀 
are used. The turbulent viscosity is then computed from 
 
𝑣𝑣𝑡𝑡 = 𝐶𝐶𝜇𝜇

𝑘𝑘2

𝜀𝜀
                                                                              (7) 

 
where 𝐶𝐶𝜇𝜇  =  0.09 . An exact equation for the transport 

equation for the dissipation 𝜀𝜀 = 𝜈𝜈 𝜕𝜕𝑢𝑢𝑖𝑖
′

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖
′

𝜕𝜕𝑥𝑥𝑗𝑗
 can be derived, but it 

is very complicated and at the end many terms are found to be 
negligible. It is much easier to look at the 𝑘𝑘equation, and to 
setup a similar equation for 𝜀𝜀. The transport equation should 
include a convective term, 𝐶𝐶 , a diffusion term, 𝐷𝐷 , a 
production term, 𝑃𝑃, and a dissipation term, 𝜀𝜀, i.e. 
 
𝐶𝐶 = 𝑃𝑃 + 𝐷𝐷 − 𝜀𝜀                                                                      (8) 
 
The production and dissipation terms in the 𝑘𝑘 equation are 
used to formulate the corresponding terms in the 𝜀𝜀 equation. 
The terms in the 𝑘𝑘  equation have the dimension 𝜕𝜕𝑘𝑘/𝜕𝜕𝑡𝑡 ≡
[𝑚𝑚2/𝑠𝑠3] , whereas the terms in the 𝜀𝜀  equation have the 
dimension  𝜕𝜕𝜕𝜕/𝜕𝜕𝑡𝑡 ≡ [𝑚𝑚2/𝑠𝑠4]  .Hence, we must multiply 𝑃𝑃 
and 𝜀𝜀  by a quantity which has a dimension [1/𝑠𝑠] . One 
quantity with this dimension is the mean velocity gradient 
which might be relevant to the production term, but not for 
the dissipation. A better choice should be 𝜀𝜀/𝑘𝑘 ≡ [1/𝑠𝑠] . 
Hence, we get 
 
𝑃𝑃 − 𝜀𝜀 = 𝜀𝜀

𝑘𝑘
(𝑐𝑐𝜀𝜀1𝑃𝑃 − 𝑐𝑐𝜀𝜀2𝜀𝜀)                                                       (9) 

 
The final form of the 𝜀𝜀 transport equation reads 
 
𝜕𝜕𝜀𝜀
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝑗𝑗
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜀𝜀
𝑘𝑘

(𝑐𝑐𝜀𝜀1𝑃𝑃 − 𝑐𝑐𝜀𝜀2𝜀𝜀) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜈𝜈 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
�                       (10) 

 
Where, �𝑐𝑐𝜇𝜇 , 𝑐𝑐𝜀𝜀1, 𝑐𝑐𝜀𝜀2,𝜎𝜎𝑘𝑘 ,𝜎𝜎𝜀𝜀� = (0.09, 1.44, 1.92, 1, 1.3) 
 
Algebraic Reynolds Stress Model (ASM) 

The Algebraic Reynolds Stress Model is a simplified 
Reynolds Stress Model. The RSM and 𝑘𝑘 − 𝜀𝜀  models are 
written in symbolic form as: 
 
RSM ∶ 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛷𝛷𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑖𝑖  
 
𝑘𝑘 − 𝜀𝜀 ∶ 𝐶𝐶 − 𝐷𝐷 = 𝑃𝑃 − 𝜀𝜀              
 
In ASM we assume that the transport (convective and 
diffusive) of uiuj  is related to that of k, i.e. 
 

𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐷𝐷𝑖𝑖𝑖𝑖 =
uiuj

𝑘𝑘
(𝐶𝐶 − 𝐷𝐷) 

Inserting the two previous equations into the equation above 
gives 
 

𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛷𝛷𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑖𝑖 =
uiuj

𝑘𝑘
(𝑃𝑃 − 𝜀𝜀) 

 
Thus the transport equation partial differential equations for 
uiuj  have been transformed into an algebraic equation based 
on the assumption in the previous equations. 
After re-writing these equations as equations for uiuj  and 
inserting the models for  𝛷𝛷𝑖𝑖𝑖𝑖  and the isotropic model for 𝜀𝜀𝑖𝑖𝑖𝑖  in 
the equation above and multiply by  𝑘𝑘/𝜀𝜀, we finally get 
 

uiuj �
2
3
𝛿𝛿𝑖𝑖𝑖𝑖 � 𝑘𝑘 

𝑘𝑘
𝜀𝜀

(1 − 𝑐𝑐2) �𝑃𝑃𝑖𝑖𝑖𝑖 − (2
3 𝛿𝛿𝑖𝑖𝑖𝑖 )𝑃𝑃� + 𝛷𝛷𝑖𝑖𝑖𝑖 ,1𝑤𝑤 + 𝛷𝛷𝑖𝑖𝑖𝑖 ,2𝑤𝑤

𝑐𝑐1 + 𝑃𝑃
𝜀𝜀 − 1

 

 
This model is an extension of the eddy-viscosity model where 
the 𝑐𝑐𝜇𝜇  constant is made a function of the ratio  𝑃𝑃/𝜀𝜀 
 
Vorticity equation 
 
Returning to viscous incompressible flow, The Navier-Stokes 
equations in vector form are given by: 
 
𝜕𝜕𝑢𝑢��⃗
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃗ .∇𝑢𝑢�⃗ = −∇ �𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔� + 𝜈𝜈∇2𝑢𝑢�⃗                                    (11) 
 
By taking the curl of the Navier-Stokes equations we obtain 
the vorticity Eq. in details taking into account  𝛻𝛻 × 𝑢𝑢�⃗  ≡ 𝜔𝜔��⃗  we 
have  
 
𝐷𝐷𝜔𝜔���⃗
𝐷𝐷𝐷𝐷

= (𝜔𝜔��⃗ .∇)𝑢𝑢�⃗ + 𝜈𝜈∇2𝜔𝜔��⃗                                                                (12) 
 
∇ × (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) → 
 
∇ × 𝜕𝜕𝑢𝑢��⃗

𝜕𝜕𝜕𝜕
+ ∇ × (𝑢𝑢�⃗ .∇𝑢𝑢�⃗ ) = −∇ × ∇ �𝑝𝑝

𝜌𝜌
+ 𝑔𝑔𝑔𝑔� + ∇ × (𝜈𝜈∇2𝑢𝑢�⃗ )                     

                             (13) 
 
The first term on the left side, for fixed reference frames, 
becomes 
 
∇ × 𝜕𝜕𝑢𝑢��⃗

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝜕𝜕
(∇ × 𝑢𝑢�⃗ ) = 𝜕𝜕𝜔𝜔���⃗

𝜕𝜕𝜕𝜕
                                                  (14) 

 
In the same manner the last term on the right side becomes 
 
∇ × (𝜈𝜈∇2𝑢𝑢�⃗ ) = 𝜈𝜈∇2𝜔𝜔��⃗                                                           (15) 

 
Applying the identity 𝛻𝛻 × 𝛻𝛻 · 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0 the pressure term 
vanishes, provided that the density is uniform  
 

∇ × �∇ �𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔�� = 0                                                      (16) 

The inertia term 𝑢𝑢�⃗ · 𝛻𝛻𝑢𝑢�⃗  can be rewritten as 
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𝑢𝑢�⃗ .∇𝑢𝑢�⃗ = 1
2
∇(𝑢𝑢�⃗ .𝑢𝑢�⃗ ) − 𝑢𝑢�⃗ × (∇ × 𝑢𝑢�⃗ ) = ∇ �𝑢𝑢

2

2
� − 𝑢𝑢�⃗ × 𝜔𝜔��⃗         (17) 

 
where 𝑢𝑢2 ≡ |𝑢𝑢�⃗ |2 = 𝑢𝑢�⃗ .𝑢𝑢�⃗  
 
Then the second term on the left side can be rewritten as 
 
∇ × (𝑢𝑢�⃗ .∇)𝑢𝑢�⃗ = (𝑢𝑢�⃗ .∇)𝜔𝜔��⃗ − (𝜔𝜔��⃗ .∇)𝑢𝑢�⃗ + 𝜔𝜔��⃗ (∇.𝑢𝑢�⃗ ) +  𝑢𝑢���⃗ (∇.𝜔𝜔��⃗ )                                              
                        (18) 
 
Putting everything together, we obtain the vorticity Eq.  
 
𝐷𝐷𝜔𝜔���⃗
𝐷𝐷𝐷𝐷

= (𝜔𝜔��⃗ .∇)𝑢𝑢�⃗ + 𝜈𝜈∇2𝜔𝜔��⃗                                                                (19) 
 
COMPUTATIONAL SETUP 
 
The inlet boundary velocity was set to 30 m/s for all 
turbulence models for direct comparison. 
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                      Span: 300 mm 

Re: 300,000 
 

 
 
 

 
 

Fig. 1 Mesh around the airfoil 

 
Fig.  2.  Boundary Conditions 

 
RESULTS AND DISCUSSION 
 
Figs 3, 4, and 5 show the stream lines of the flow field which 
is generated by k − ε, k − ω, and RSM models, respectively. 
The angle of attack is set to (α=24) so as to make sure that 
there exist boundary layer separation over the airfoil.  
   

 
Fig. 3.  Standard 𝒌𝒌 − 𝜺𝜺 

 
Fig. 4. Standard 𝑘𝑘 − 𝜔𝜔 

 
Fig. 5. RSM 
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Obviously, two-equation models could not predict the 
boundary layer separation on the top wall of the airfoil, 
whereas RSM nicely predicted the location and magnitude of 
the vortex formed due to the separation. Both models, two-
equation and RSM, showed the tendency of the flow to form 
a wing tip vortex, but RSM model favourably predicted the 
shape of the vortex especially in the far wake region. 

Properties at symmetry plane (RSM, α=24) 

Figs 6, 7, and 8 show contours of static pressure, vorticity and 
a plot of streamlines together with static pressure contours. 
The relatively low static pressure over the airfoil creates 
unsteady separated flow and tip vortices.  
 
Frame 1 to 12 show the evolution of the vortex on the upper 
wall of the airfoil. In the first seven frames the vortex is 
shaped, in Frames 8, 9, and 10 the vortex breakup, in frame 
11 the vortex remaining flushed downstream to the far wake 
region by convection. In Frame 12 a new vortex is being 
formed in a life-cycle manner.  

Pressure distribution 

Figs 9, 10, and 11 show static pressure distribution over upper 
and lower surfaces of the airfoil versus distance from leading 
edge as calculated by𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔, and RSM models. 
 

 
 

 
Fig. 6. Static Pressure 

 
Fig. 7. Vorticity contours 

 
Fig. 8. Streamlines and static pressure 

 
Frame No. (1) 

 
Frame No. (2) 

 
Frame No. (3) 

 
Frame No. (4) 

 
Frame No. (5) 

 
Frame No. (6) 
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Frame No. (7) 

 
Frame No. (8) 

 
Frame No. (9) 

 
Frame No. (10) 

 
Frame No. (11) 

 
Frame No. (12) 

Fig. 12 shows comparison of the lift coefficient calculated 
using the three models. Reynolds stress model predicted the 
boundary layer separation and consequently the declining of 
the lift force at large angles of attack. 𝒌𝒌 − 𝜺𝜺 and 𝒌𝒌 − 𝝎𝝎  

 

 
Fig. 9. Pressure coefficient vs. cord (𝑘𝑘 − 𝜀𝜀) 

 

 
Fig. 10. Pressure coefficient vs. cord (𝑘𝑘 − 𝜔𝜔) 

 

 
Fig. 11. Pressure coefficient vs. cord (𝑅𝑅𝑅𝑅𝑅𝑅) 

 

 
Fig. 12.  Lift coefficient vs. angle of attack 
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models failed to predict the flow separation at large angle of 
attack, therefore, the lift coefficient calculated by these 
models continue to increase almost linearly without any trace 
of lift declination. 
 
4. CONCLUSIONS 
 
One of the most important aspects of a turbulence model for 
aerodynamic applications is its ability to accurately predict 
adverse pressure gradient boundary-layer flows. It is 
especially important that a model be able to predict the 
location of flow separation and the wake behaviour associated 
with it. 
In this study, two-equation turbulence models, 𝒌𝒌 − 𝜺𝜺 
and k −ω , and Reynolds Stress Modelwere tested for the 
ability to predict boundary layer separation on an air foil. 
Reynolds Stress model captured the physics of separated flow 
favourably giving very realistic evolution of the vortex 
formed due to separation. It was also found that lift force is 
highly correlated with flow separation, with the tremendous 

capabilities of RSM model in predicting the location and 
behaviour of a separated flow. In addition, RSM model 
generated lift coefficient that is comparable to the 
experimental data. 
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