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Abstract: A Reinforcement learning (RL) approach is presented as a new automatic learning approach to the 

problem of optimal operation and control of batch chemical processes (e.g. batch reactors and batch distillation 

columns). The approach is particularly suited to batch process optimization problems, especially through not 

assuming prior detailed process knowledge or availability of a process model. The particular suitability of RL as a 

framework for optimising batch process operation has been recognised already (Martinez et al. (1998a,b)). In the 

implementation of RL, use is made of how the plant responds to control actions aggregated in generalised 

‘predictive’ models, each linking adjacent intra-batch decision steps.  The relative worth of a control action at a 

decision step is aggregated in the ‘value function’. Both the predictive models and the value function are learned 

from the accumulating measurement data, batch-to-batch, starting from a small initial set of test batches.  The 

methodology is exemplified using two simple batch process case studies which were used to test the MATLAB 

computer coding of the RL algorithm. In addition, issues regarding the structure of the initial training data set and 

the embedded Neural Network have been investigated. 
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  
1. Introduction 

Rising importance of high-value-added, low-volume 

speciality chemicals has resulted in a renewed interest in 

batch processing technologies (Diewkar, 1995) and the 

drive for optimum operation is ever present. There is an 

important literature covering the optimal operation and 

control of batch chemical processes (Diwekar et al. (1995), 

Mujtaba and Hussian (1998) and Zhang and Smith (2004),). 

Although the classical approach to determining efficient 

time profiles still depends upon having an accurate process 

model (Aziz and Mujtaba (2002), Mujtaba et al. (2006) and 

Pommier et al. (2008)), in practice such models are never 

available partly because conditions and parameters vary 

from one batch to another. Furthermore, the classical open 

loop time profile can not react to measurements during the 

progress of a batch. This is due to the fact that with some of 

the models available, on-line measurements of the process 

state are usually scarce and seldom instantaneous (Luyben 

(1992)). Despite all those problems human operators have 

managed so far to incrementally drive those processes to 

near optimal operation. Hence batch process optimization 

problems fit nicely with RL applications since no 

knowledge of a process model is assumed by the approach. 

Furthermore, research in general has focused on the other 

problems in optimal operation and control besides 

addressing the central issue of the unavailability of an 

accurate process model in practice. Hence, the current work 

was targeted at producing practical solutions to this control 

problem. 

 

2. Methodology 

If an analysis of our learning during childhood is made, we 

find that (for example) we learn to walk without the help of 

an explicit teacher. Also learning how to talk, or even how 

to behave in society when we are growing up. We tend to 

learn according to trial and error interaction with our 

environment and then go on reinforcing those actions we 

took and resulted in better situations. Following this natural 

process provides us with wealth of knowledge and 

information about cause and effect, the results of different 

actions and hence what to do to achieve certain goals. 

RL algorithms could be seen as a way of providing a 

computational approach focused on goal-directed learning 

and decision making from interaction. Following the book 
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on the subject by Sutton and Barto (1998) one could define 

RL, as simply being the mapping of situations to actions so 

as to maximise a numerical reward gauged through a 

Performance Index (PI). An important point to add is that 

during learning, the algorithm is not told which actions to 

take but must explore and exploit to discover actions that 

yield the most reward by trying those actions. The RL 

algorithm tends to learn an optimum control policy by 

gathering data from a series of batch runs 

Batch chemical process problems fit nicely with a typical 

RL problem, characterised by setting of explicit goals, 

breaking of problem into decision steps, interaction with 

environment, sense of uncertainty, sense of cause and 

effect. The main elements of RL comprise of an agent (e.g. 

operator, software) and an environment (Sutton and Barto 

(1998)). The agent is simply the controller, which interacts 

with the environment by selecting certain actions. The 

environment then responds to those actions and presents 

new situations to the agent. The agent’s decisions are based 

on signals from the environment, called the environment's 

state. Figure 1 shows the main framework of Reinforcement 

Learning. 

Agent
(e.g. operator)

Environment
(e.g. batch
distillation)

Process goal
(e.g. achieve a certain

product purity)

Preferences

(e.g. consumption of least

amount of energy)

Prior knowledge
(e.g. experience)

Environment state
(e.g. still pot temperature)

Action
(e.g. reflux ratio)

mount of

 
Figure (1). Main framework of Reinforcement Learning. 

 

The RL approach developed in this study is composed of a 

combination of integrated techniques such as Neural 

Networks (Carling (1992), Dynamic Programming 

(Bellman (1957)) and Wire Fitting (Baird and Klopf 

(1993)). Furthermore, predictive models are used to mimic 

the forward dynamics of the process.  
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where PI is the Performance Index. Penalty of -1 is a 

nominal value. Q (st,at) is a value function for a state action 

pair. 

The main aim of the RL algorithm is to optimize the 

operation of the process through the following control law: 
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where  represents the set of feasible control actions.  

The RL approach could be seen (i.e. with reference to Wire 

Fitting approximations) as a means of learning to identify 

the optimal wire, or wires for the different states. Learning 

the optimal wire is achieved by learning the weights and 

biases in the Neural Network. The change in weights ( 

weights) is then calculated as follows: 
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where  is referred to as the learning rate. 
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Equation 4 is true only when the RL algorithm converges to 

the actual optimal value function. During incremental 

learning of the optimal value function, differences occur 

which define the error: Bellman error. The mean squared 

Bellman error (Bellman, 1957), EB, is then used in the 

approach to drive the learning process to the true optimal 

value function (Equation 5 defines EB for a given state-

action pair (st,at)). 

 

 


























 














             otherwise., ),(),( max
2

1
      

                action. final a is   if  ,,(
2

1

2
**

11

*

2
***

1

tttt
a

ttt

B

asQasQE

aasQPIE

t

E
 

(5) 

 

 

                                                                  (5) 
3.  Case Study 

To test the implementation of the RL approach, two case 

studies were used. The first consisted of non-overlap of 

target states while the second provided a higher level of 

complexity with overlap of target states. Thus the approach 

has to learn how to respond with two different actions given 

the same state but at different stages. 

 

3.1  Case Study 1: Non-overlap of States in Target 

Profile Data 

A simple batch process was used in order to test the 

MATLAB implementation of the RL algorithm already 

developed and to study different aspects of the 

methodology. The case study involves learning a 

predefined profile shown in Figure 1, assuming that both 

sample period and time constant is 1 hour. The relationship 

between the current state St and the one step ahead future 

state St+1 is according to the first order relationship: 
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Hence, the process is represented by 
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TT-1T-2

State

T-3

S T =9.5021

S T-1 = 8.6466

S T-2 = 6.3212

1 hour 1 hour 1 hour

    Figure (1). Pre-defined optimum profile (Optimal action = 

10 at each decision step) 

 
The Value Function was then defined as 

 
21

3

400 

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Tt

Tt

predefined

tt ssPI                          (8) 

where st is the state at the time interval t and stpredefined is 

the corresponding state following the predefined profile. 

Hence, the Performance Index penalises deviations from 

the profile of predefined states. 

 

3.2   Case Study 2: Overlap of States in Target Profile 

Data 

The second approach towards testing robustness of 

methodology, when faced with two similar states that 

require different actions was through Case Study 2. The 

case study involves the use of identical mid-range states in 

the target profile. Figure 2 shows how defining similar 

states at T-2 and T-1 modifies the Case Study 1. 

TT-1T-2

State

T-3

S T =11.4912

S T-2= 6.3212

 

Figure (2). Case study 2 with identical mid-range states 

in the target profile (optimal action is as follows: 10, 

6.3212 and 14.5 at decision step T-3,T-2 and T-1 

respectively) 

TT-1T-2

State

T-3

S T =11.4912

S T-2= 6.3212

Figure (2). Case study 2 with identical mid-range states in 

the target profile (optimal action is as follows: 10, 6.3212 

and 14.5 at decision step T-3,T-2 and T-1 respectively) 
 

The Value Function was then redefined as 
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where st is the state at the time interval t and s
predefined

t  is 

the corresponding state following the predefined profile. It 

can be noticed that a factor of eight is introduced into the 

definition of the Performance Index. Although the 

optimization is not affected, the factor was introduced so as 

to magnify the changes that occur in PI 

 

4. Results and Discussion 

Once the case studies were defined, the computer coding of 

the RL algorithm was applied to test for bugs in the 

program. Furthermore, investigations were carried out in 

the following areas of the methodology: 

1. Structure of initial training data set. 

2. Neural Network Topology. 

3. Incremental learning of the Value Function. 

 

4.1  Investigation into Structure of Initial Training Data 
Set 

One of the most important issues in RL applications is the 

selection of the initial training data set (Neglecting 

uncertainty in the process at this stage). For computer code 

debugging (and testing) purposes, 50 non-overlapping batch 

runs were used as the initial training data set. The purpose 

of this was to provide enough training data, and to simplify 

the problem for the RL algorithm. Simplification of the 

problem lies in the use of non-overlapping data, which 

would mean that there does not exist similar states at 

different stages.  

Using Case Study 1, learning of the Value Function was 

performed for states at T-1, then progressed to include 

states at T-2, and finally to include the initial state 

(assuming all batches start from the same initial state). This 

procedure was repeated four separate times using the same 

training data set but starting from different initial weights in 

the Neural Network. The results confirmed convergence of 

the Reinforcement Learning algorithm as shown in Table 1. 

The third run, shown in Table 1, provided the best result 



 
Mustafa, M.A. and Wilson, J.A. / Proceeding  Vol. 1 pp9-15 (February 2012) 

12 

 

 

with the lowest sum of squared error of the Neural Network 

outputs equal to 21.8338, and a value function of 399.978 

which is the closest to the optimal value of 400. 

 
 

Table (1). Performance of methodology while using 50 non-overlapping batch runs as the training data set (best run in 

bold) 

Run number SSE 

(Bellman error EB) 

Proposed action to take at stage Value Function 

T-3 to T-2 T-2 to T-1 T-1 to T 

1 407.527 11.7672 9.9531 9.9531 398.5958 

2 49.7399 10.0676 10.3848 9.9052 399.9298 

3 21.8338 10.0122 9.8691 10.2436 399.978 

4 61.6385 10.1695 10.2375 10.1412 399.9273 

 

The next step was to try a smaller data set and hence a 20 

non-overlapping training data set was used. Again learning 

of the Value Function was repeated four times using the 

same 20 batch run training data set, but starting from 

different initial weights in the Neural Network. 

Convergence was achieved with the least value of SSE of 

the Neural Network of 10.23 and a value function of 399.9.  

The values of SSE for the other 3 runs were 10.9, 139.2 and 

159. 

 

Following the convergence of the algorithm so far, the 

complexity of the case study was increased to test cases 

where overlapping states occur. The issue of overlapping 

data deals with the existence of similar states in different 

stages, and how robust the methodology is in providing the 

appropriate action for the same state at different stages. The 

following two approaches were used: 

1. Use of an overlapping training data set 

2. Use of a different case study  (Case Study 2)where 

overlapping states occur in the target profile data 

Starting with the first approach, an overlapping training 

data set of 50 batch runs was used and the algorithm was 

executed four separate times, starting from different initial 

random weights in the Neural Network. The results 

produced are shown in Table 2. 

 

Table (2). Performance of methodology while using an overlapping data set of 50 batch runs (the best case run is in bold 

font) 

Run 

number 

SSE 

(Bellman error EB) 

Proposed action to take at stage Value Function 

T-3 to T-2 T-2 to T-1 T-1 to T 

1 90.7925 9.2535 10.8504 9.7951 399.6448 

2 16.7022 10.2081 9.3909 10.1042 399.866 

3 62.8841 9.8576 10.7945 9.7459 399.7716 

4 85.7716 9.8926 10.6302 9.963 399.843 

 

Since, the optimal value function is 400, it is clear from the 

results that the algorithm managed to learn the Value 

Function (up to this point) using both overlapping and non-

overlapping data. The second run provided the lowest sum 

of squared error of the Neural Network equal to 16.70. 

Furthermore, an overlapping training data set of 30 batch 

runs was used and applied to Case Study 2 with overlap of 

states in target profile data. Convergence was still achieved 

with the lowest SSE value of 21.19. The results prove that 

the RL algorithm is able to differentiate between different 

actions to take regarding similar states in different stages. 

 

The next step into the investigation of the initial training 

data then revolved around determining how the number of 

batch runs in the initial training data set affects the learning 

of the Performance Index. Again, using Case Study 2, the 

algorithm was executed using different initial training data 

sets ranging from 3 to 30 batch runs. The algorithm was 

repeated four separate times (for each data set) starting 

from different initial random weights in the Neural 

Network. Figure 3 shows the average value of the 

performance (averaged over the four runs) as a function of 

the number of batch runs in each initial data set. All cases 

achieve near optimal values with the exception of using 

three batch runs, where the algorithm fails to converge. 

Hence, the use of three initial batch runs could be suggested 

as an initial starting point for later implementation of the 

full incremental RL algorithm to Case Study 2. 
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Figure (3). Average Performance Index Vs number of batch runs in initial data set for Case Study 4.2 

 

4.2 Investigation into Neural Network Topology 

 

Case Study 2 was used to investigate the effect of the 

Neural Network Topology on the learning of the Value 

Function.  The use of three wires for the Value Function 

approximation fixes the number of output nodes in the 

Neural Network to three nodes. As for the number of nodes 

and hidden layers, a simple Neural Network with one node 

in the hidden layer was used followed by a gradual increase 

in the complexity of the NN. Using a training data set of 50 

random batches, the algorithm was repeated three separate 

times (starting from different initial training weights in the 

Neural Network) for different Neural Network 

architectures. The number of nodes used ranged from 1 to 8 

where any increase in the complexity of the Neural 

Network was terminated due to the sum of squared error of 

the NN reaching extremely high values. The results in 

Figure 4 show the log of the sum of squared errors of the 

Neural Network for the best case when different numbers of 

nodes in the hidden layer is used. The results show that the 

use of four nodes in the hidden layer gives the best 

performance (lowest SSE) for Case Study 2.  
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Figure (4). Effect of number of nodes in hidden layer on the performance of the Neural Network 
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4.3 Incremental Learning of the Value Function 

 

Up to this point the Reinforcement Learning algorithm had 

only been partially implemented by restricting the 

algorithm to learn only from a pre-set number of initial 

batch runs. From this stage onwards, the full RL algorithm 

is implemented with incremental batch to batch learning. 

Incremental Learning refers to the execution of the 

following steps: Step 1 (Start with a small initial training 

data set), Step 2 (Learn the Value Function for the current 

data set), Step 3 (Calculate and implement new control 

profile of manipulated variables during course of next new 

batch run), Step 4 (Add data from the new batch run to the 

current training data set), Step 5 (Repeat Steps 2, 3, and 4 

until a convergence criterion is met).  

 

Previous results on the number of training data batches 

(Figure 3) show that learning was not complete for the case 

with only three initial batch runs. Hence, an initial training 

data set of three batch runs was used before implementing 

the full incremental RL algorithm to Case Study 2. Figure 4 

shows how the RL algorithm manages to incrementally 

learn the Value Function, over subsequent batches, 

converging to a value of 399.98. 
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      Figure (4). Incremental improvement in Performance Index with increase in number of batch runs for Case Study 2 

(The dotted line refers to the Performance Index values of the 3 initial batch runs) 

 

 

5. Conclusion 

 

The simple batch process case studies presented excellent 

candidates for testing the RL algorithm. In addition, 

different layers of complexity were easily added in order to 

gain insight into various issues regarding the RL algorithm. 

The simple case studies have allowed the computer coding 

in MATLAB, of the RL algorithm, to be thoroughly 

debugged and tested. As for the RL algorithm, it was shown 

to be able to identify the appropriate action required when 

faced with similar values of states at different stages. 

Finally, concerning the Neural Network topology, the use 

of four nodes in the hidden layer gave the best results for 

Case Study 2. Also a minimum of 3 batches for the training 

data set were required. Hence, a minimum of four nodes in 

the hidden layer and 3 batches for the training data set 

could be suggested for use in future RL applications. 

 

 

 

 

Notation 

 

at  control action at time t 

E squared error 

EB  mean squared Bellman error 

),( tt asQ  Value Function for state action pair at time t 

PI Performance Index 

RL Reinforcement Learning 

st  Process state at time t 

  learning rate 

  set of feasible control actions 
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Subscripts and Superscripts 

 

T Time 

T final time step 

* Optimum 
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