

9

Optimum Operation and Control of a Batch Chemical Process using

Reinforcement Learning

Mustafa, M.A.
1
 and Wilson, J.A.

2

1
Department of Chemical Engineering, Faculty of Engineering, University of Khartoum

2
Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham

Abstract: A Reinforcement learning (RL) approach is presented as a new automatic learning approach to the

problem of optimal operation and control of batch chemical processes (e.g. batch reactors and batch distillation

columns). The approach is particularly suited to batch process optimization problems, especially through not

assuming prior detailed process knowledge or availability of a process model. The particular suitability of RL as a

framework for optimising batch process operation has been recognised already (Martinez et al. (1998a,b)). In the

implementation of RL, use is made of how the plant responds to control actions aggregated in generalised

‘predictive’ models, each linking adjacent intra-batch decision steps. The relative worth of a control action at a

decision step is aggregated in the ‘value function’. Both the predictive models and the value function are learned

from the accumulating measurement data, batch-to-batch, starting from a small initial set of test batches. The

methodology is exemplified using two simple batch process case studies which were used to test the MATLAB

computer coding of the RL algorithm. In addition, issues regarding the structure of the initial training data set and

the embedded Neural Network have been investigated.

Keywords:


1. Introduction

Rising importance of high-value-added, low-volume

speciality chemicals has resulted in a renewed interest in

batch processing technologies (Diewkar, 1995) and the

drive for optimum operation is ever present. There is an

important literature covering the optimal operation and

control of batch chemical processes (Diwekar et al. (1995),

Mujtaba and Hussian (1998) and Zhang and Smith (2004),).

Although the classical approach to determining efficient

time profiles still depends upon having an accurate process

model (Aziz and Mujtaba (2002), Mujtaba et al. (2006) and

Pommier et al. (2008)), in practice such models are never

available partly because conditions and parameters vary

from one batch to another. Furthermore, the classical open

loop time profile can not react to measurements during the

progress of a batch. This is due to the fact that with some of

the models available, on-line measurements of the process

state are usually scarce and seldom instantaneous (Luyben

(1992)). Despite all those problems human operators have

managed so far to incrementally drive those processes to

near optimal operation. Hence batch process optimization

problems fit nicely with RL applications since no

knowledge of a process model is assumed by the approach.

Furthermore, research in general has focused on the other

problems in optimal operation and control besides

addressing the central issue of the unavailability of an

accurate process model in practice. Hence, the current work

was targeted at producing practical solutions to this control

problem.

2. Methodology

If an analysis of our learning during childhood is made, we

find that (for example) we learn to walk without the help of

an explicit teacher. Also learning how to talk, or even how

to behave in society when we are growing up. We tend to

learn according to trial and error interaction with our

environment and then go on reinforcing those actions we

took and resulted in better situations. Following this natural

process provides us with wealth of knowledge and

information about cause and effect, the results of different

actions and hence what to do to achieve certain goals.

RL algorithms could be seen as a way of providing a

computational approach focused on goal-directed learning

and decision making from interaction. Following the book

 Available online at www.uofk.edu
Proceedings Vol. 1 pp. 9-15

Annual Conference of Postgraduate Studies and Scientific Research

17-20 February 2012-10-17 Friendship

 Hall, Khartoum

http://www.uofk.edu/

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

10

on the subject by Sutton and Barto (1998) one could define

RL, as simply being the mapping of situations to actions so

as to maximise a numerical reward gauged through a

Performance Index (PI). An important point to add is that

during learning, the algorithm is not told which actions to

take but must explore and exploit to discover actions that

yield the most reward by trying those actions. The RL

algorithm tends to learn an optimum control policy by

gathering data from a series of batch runs

Batch chemical process problems fit nicely with a typical

RL problem, characterised by setting of explicit goals,

breaking of problem into decision steps, interaction with

environment, sense of uncertainty, sense of cause and

effect. The main elements of RL comprise of an agent (e.g.

operator, software) and an environment (Sutton and Barto

(1998)). The agent is simply the controller, which interacts

with the environment by selecting certain actions. The

environment then responds to those actions and presents

new situations to the agent. The agent’s decisions are based

on signals from the environment, called the environment's

state. Figure 1 shows the main framework of Reinforcement

Learning.

Agent
(e.g. operator)

Environment
(e.g. batch
distillation)

Process goal
(e.g. achieve a certain

product purity)

Preferences

(e.g. consumption of least

amount of energy)

Prior knowledge
(e.g. experience)

Environment state
(e.g. still pot temperature)

Action
(e.g. reflux ratio)

mount of

Figure (1). Main framework of Reinforcement Learning.

The RL approach developed in this study is composed of a

combination of integrated techniques such as Neural

Networks (Carling (1992), Dynamic Programming

(Bellman (1957)) and Wire Fitting (Baird and Klopf

(1993)). Furthermore, predictive models are used to mimic

the forward dynamics of the process.
























 otherwise.),,(max

 achieved,beennothasgoaltheandactionfinalais if .,1

 achieved,beenhasgoaltheandactionfinalais if ,

),(

11
1

tt
a

t

t

tt

asQ

a

aPI

asQ

t

(1)

where PI is the Performance Index. Penalty of -1 is a

nominal value. Q (st,at) is a value function for a state action

pair.

The main aim of the RL algorithm is to optimize the

operation of the process through the following control law:

 











asQ
a

a ,arg max
* (2)

(2)

where  represents the set of feasible control actions.

The RL approach could be seen (i.e. with reference to Wire

Fitting approximations) as a means of learning to identify

the optimal wire, or wires for the different states. Learning

the optimal wire is achieved by learning the weights and

biases in the Neural Network. The change in weights (

weights) is then calculated as follows:






















weights

ErrorBellmansquaredMean
weights

 (3) (3)

where  is referred to as the learning rate.



















 otherwise.),,(* max

 action final a is if ,

),(

11

*

**

1

tt
a

t

tt

asQ

aPI

asQ

t

(4)

 (4)

Equation 4 is true only when the RL algorithm converges to

the actual optimal value function. During incremental

learning of the optimal value function, differences occur

which define the error: Bellman error. The mean squared

Bellman error (Bellman, 1957), EB, is then used in the

approach to drive the learning process to the true optimal

value function (Equation 5 defines EB for a given state-

action pair (st,at)).

 


























 














 otherwise.,),(),(max
2

1

 action. final a is if ,,(
2

1

2
**

11

*

2

1

tttt
a

ttt

B

asQasQE

aasQPIE

t

E

(5)

 (5)
3. Case Study

To test the implementation of the RL approach, two case

studies were used. The first consisted of non-overlap of

target states while the second provided a higher level of

complexity with overlap of target states. Thus the approach

has to learn how to respond with two different actions given

the same state but at different stages.

3.1 Case Study 1: Non-overlap of States in Target

Profile Data

A simple batch process was used in order to test the

MATLAB implementation of the RL algorithm already

developed and to study different aspects of the

methodology. The case study involves learning a

predefined profile shown in Figure 1, assuming that both

sample period and time constant is 1 hour. The relationship

between the current state St and the one step ahead future

state St+1 is according to the first order relationship:

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

11

 ass ttt
 


1

1
 (6)

where e 
1


, =1hour

Hence, the process is represented by

ass ttt
63212.036788.0

1



 (7)

TT-1T-2

State

T-3

S T =9.5021

S T-1 = 8.6466

S T-2 = 6.3212

1 hour 1 hour 1 hour

 Figure (1). Pre-defined optimum profile (Optimal action =

10 at each decision step)

The Value Function was then defined as

 
21

3

400 





Tt

Tt

predefined

tt ssPI (8)

where st is the state at the time interval t and stpredefined is

the corresponding state following the predefined profile.

Hence, the Performance Index penalises deviations from

the profile of predefined states.

3.2 Case Study 2: Overlap of States in Target Profile

Data

The second approach towards testing robustness of

methodology, when faced with two similar states that

require different actions was through Case Study 2. The

case study involves the use of identical mid-range states in

the target profile. Figure 2 shows how defining similar

states at T-2 and T-1 modifies the Case Study 1.

TT-1T-2

State

T-3

S T =11.4912

S T-2= 6.3212

Figure (2). Case study 2 with identical mid-range states

in the target profile (optimal action is as follows: 10,

6.3212 and 14.5 at decision step T-3,T-2 and T-1

respectively)

TT-1T-2

State

T-3

S T =11.4912

S T-2= 6.3212

Figure (2). Case study 2 with identical mid-range states in

the target profile (optimal action is as follows: 10, 6.3212

and 14.5 at decision step T-3,T-2 and T-1 respectively)

The Value Function was then redefined as

 
21

3

*8400 





Tt

Tt

predefined

tt ssPI (9)

where st is the state at the time interval t and s
predefined

t is

the corresponding state following the predefined profile. It

can be noticed that a factor of eight is introduced into the

definition of the Performance Index. Although the

optimization is not affected, the factor was introduced so as

to magnify the changes that occur in PI

4. Results and Discussion

Once the case studies were defined, the computer coding of

the RL algorithm was applied to test for bugs in the

program. Furthermore, investigations were carried out in

the following areas of the methodology:

1. Structure of initial training data set.

2. Neural Network Topology.

3. Incremental learning of the Value Function.

4.1 Investigation into Structure of Initial Training Data
Set

One of the most important issues in RL applications is the

selection of the initial training data set (Neglecting

uncertainty in the process at this stage). For computer code

debugging (and testing) purposes, 50 non-overlapping batch

runs were used as the initial training data set. The purpose

of this was to provide enough training data, and to simplify

the problem for the RL algorithm. Simplification of the

problem lies in the use of non-overlapping data, which

would mean that there does not exist similar states at

different stages.

Using Case Study 1, learning of the Value Function was

performed for states at T-1, then progressed to include

states at T-2, and finally to include the initial state

(assuming all batches start from the same initial state). This

procedure was repeated four separate times using the same

training data set but starting from different initial weights in

the Neural Network. The results confirmed convergence of

the Reinforcement Learning algorithm as shown in Table 1.

The third run, shown in Table 1, provided the best result

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

12

with the lowest sum of squared error of the Neural Network

outputs equal to 21.8338, and a value function of 399.978

which is the closest to the optimal value of 400.

Table (1). Performance of methodology while using 50 non-overlapping batch runs as the training data set (best run in

bold)

Run number SSE

(Bellman error EB)

Proposed action to take at stage Value Function

T-3 to T-2 T-2 to T-1 T-1 to T

1 407.527 11.7672 9.9531 9.9531 398.5958

2 49.7399 10.0676 10.3848 9.9052 399.9298

3 21.8338 10.0122 9.8691 10.2436 399.978

4 61.6385 10.1695 10.2375 10.1412 399.9273

The next step was to try a smaller data set and hence a 20

non-overlapping training data set was used. Again learning

of the Value Function was repeated four times using the

same 20 batch run training data set, but starting from

different initial weights in the Neural Network.

Convergence was achieved with the least value of SSE of

the Neural Network of 10.23 and a value function of 399.9.

The values of SSE for the other 3 runs were 10.9, 139.2 and

159.

Following the convergence of the algorithm so far, the

complexity of the case study was increased to test cases

where overlapping states occur. The issue of overlapping

data deals with the existence of similar states in different

stages, and how robust the methodology is in providing the

appropriate action for the same state at different stages. The

following two approaches were used:

1. Use of an overlapping training data set

2. Use of a different case study (Case Study 2)where

overlapping states occur in the target profile data

Starting with the first approach, an overlapping training

data set of 50 batch runs was used and the algorithm was

executed four separate times, starting from different initial

random weights in the Neural Network. The results

produced are shown in Table 2.

Table (2). Performance of methodology while using an overlapping data set of 50 batch runs (the best case run is in bold

font)

Run

number

SSE

(Bellman error EB)

Proposed action to take at stage Value Function

T-3 to T-2 T-2 to T-1 T-1 to T

1 90.7925 9.2535 10.8504 9.7951 399.6448

2 16.7022 10.2081 9.3909 10.1042 399.866

3 62.8841 9.8576 10.7945 9.7459 399.7716

4 85.7716 9.8926 10.6302 9.963 399.843

Since, the optimal value function is 400, it is clear from the

results that the algorithm managed to learn the Value

Function (up to this point) using both overlapping and non-

overlapping data. The second run provided the lowest sum

of squared error of the Neural Network equal to 16.70.

Furthermore, an overlapping training data set of 30 batch

runs was used and applied to Case Study 2 with overlap of

states in target profile data. Convergence was still achieved

with the lowest SSE value of 21.19. The results prove that

the RL algorithm is able to differentiate between different

actions to take regarding similar states in different stages.

The next step into the investigation of the initial training

data then revolved around determining how the number of

batch runs in the initial training data set affects the learning

of the Performance Index. Again, using Case Study 2, the

algorithm was executed using different initial training data

sets ranging from 3 to 30 batch runs. The algorithm was

repeated four separate times (for each data set) starting

from different initial random weights in the Neural

Network. Figure 3 shows the average value of the

performance (averaged over the four runs) as a function of

the number of batch runs in each initial data set. All cases

achieve near optimal values with the exception of using

three batch runs, where the algorithm fails to converge.

Hence, the use of three initial batch runs could be suggested

as an initial starting point for later implementation of the

full incremental RL algorithm to Case Study 2.

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

13

390

391

392

393

394

395

396

397

398

399

400

3 6 10 15 20 25 30

Number of batch runs in intial data set

P
e

rf
o
rm

a
n
c
e

 I
n
d

e
x

Figure (3). Average Performance Index Vs number of batch runs in initial data set for Case Study 4.2

4.2 Investigation into Neural Network Topology

Case Study 2 was used to investigate the effect of the

Neural Network Topology on the learning of the Value

Function. The use of three wires for the Value Function

approximation fixes the number of output nodes in the

Neural Network to three nodes. As for the number of nodes

and hidden layers, a simple Neural Network with one node

in the hidden layer was used followed by a gradual increase

in the complexity of the NN. Using a training data set of 50

random batches, the algorithm was repeated three separate

times (starting from different initial training weights in the

Neural Network) for different Neural Network

architectures. The number of nodes used ranged from 1 to 8

where any increase in the complexity of the Neural

Network was terminated due to the sum of squared error of

the NN reaching extremely high values. The results in

Figure 4 show the log of the sum of squared errors of the

Neural Network for the best case when different numbers of

nodes in the hidden layer is used. The results show that the

use of four nodes in the hidden layer gives the best

performance (lowest SSE) for Case Study 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

Number of nodes in hidden layer

L
o

g
 o

f
S

S
E

 o
f
N

e
u

ra
l
N

e
tw

o
rk

Figure (4). Effect of number of nodes in hidden layer on the performance of the Neural Network

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

14

4.3 Incremental Learning of the Value Function

Up to this point the Reinforcement Learning algorithm had

only been partially implemented by restricting the

algorithm to learn only from a pre-set number of initial

batch runs. From this stage onwards, the full RL algorithm

is implemented with incremental batch to batch learning.

Incremental Learning refers to the execution of the

following steps: Step 1 (Start with a small initial training

data set), Step 2 (Learn the Value Function for the current

data set), Step 3 (Calculate and implement new control

profile of manipulated variables during course of next new

batch run), Step 4 (Add data from the new batch run to the

current training data set), Step 5 (Repeat Steps 2, 3, and 4

until a convergence criterion is met).

Previous results on the number of training data batches

(Figure 3) show that learning was not complete for the case

with only three initial batch runs. Hence, an initial training

data set of three batch runs was used before implementing

the full incremental RL algorithm to Case Study 2. Figure 4

shows how the RL algorithm manages to incrementally

learn the Value Function, over subsequent batches,

converging to a value of 399.98.

384

386

388

390

392

394

396

398

400

1 2 3 4 5 6 7 8 9 10 11

Number of batch runs in training data set

P
e

rf
o
rm

a
n
c
e

 I
n
d

e
x

 Figure (4). Incremental improvement in Performance Index with increase in number of batch runs for Case Study 2

(The dotted line refers to the Performance Index values of the 3 initial batch runs)

5. Conclusion

The simple batch process case studies presented excellent

candidates for testing the RL algorithm. In addition,

different layers of complexity were easily added in order to

gain insight into various issues regarding the RL algorithm.

The simple case studies have allowed the computer coding

in MATLAB, of the RL algorithm, to be thoroughly

debugged and tested. As for the RL algorithm, it was shown

to be able to identify the appropriate action required when

faced with similar values of states at different stages.

Finally, concerning the Neural Network topology, the use

of four nodes in the hidden layer gave the best results for

Case Study 2. Also a minimum of 3 batches for the training

data set were required. Hence, a minimum of four nodes in

the hidden layer and 3 batches for the training data set

could be suggested for use in future RL applications.

Notation

at control action at time t

E squared error

EB mean squared Bellman error

),(tt asQ Value Function for state action pair at time t

PI Performance Index

RL Reinforcement Learning

st Process state at time t

 learning rate

 set of feasible control actions

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

15

Subscripts and Superscripts

T Time

T final time step

* Optimum

REFERENCES

[1] Aziz, N., Mujtaba, M. 2002, ‘Optimal operation

polices in batch reactors’, Chemical Engineering

Journal, vol. 85, no. 2-3, pp. 313-325.

[2] Baird, L.C. and Klopf, A.H. 1993, Reinforcement

Learning with High-dimensional Continuos Actions,

Technical Report WL-TR-93-1147, Wright

Laboratory, Wright Patterson Air Force Base.

[3] Bellman, R. 1957, Dynamic Programming, Princeton

University, Press, Princeton, New Jersey.

[4] Carling A. 1992, Introducing Neural Networks,

SIGMA Press, UK

[5] Diwekar, U.M. 1995, Batch Distillation: Simulation,

Optimal Design and Control, Carneige Mellon

University, Pittsburg, Pennsylvania.

[6] Luyben, W.L. 1992, Practical distillation control. Van

Nostrand Reinhold, New York, USA.

[7] Martinez, E.C, Pulley, R.A., and Wilson, J.A. 1998a,

‘Learning to Control the Performance of Batch

Processes’, Chemical Engineering Research &

Design, vol. 76(A6), pp. 711-722.

[8] Martinez, E.C, and Wilson, J.A. 1998b, ‘A Hybrid

Neural Network First Principles Approach to Batch

Unit Optimisation’, Computer & Chemical

Engineering, Suppl. 22:S893-S896.

[9] Mujtaba, I.M, Aziz, N., Hussain, M.A 2006, ‘Neural

Network Based Modelling and control in Batch

Reactor’, Chemical Engineering Research and

Design, vol. 84, no. 8, pp. 635-644.

[10] Mujtaba, I.M. and Hussain, M.A. 1998, ‘Optimal

Operation of Dynamic Processes Under Process-

Model Mismatches: Application to Batch

Distillation’, Computers & chemical. Engineering,

vol. 22, Suppl., S621-S624.

[11] Pommier, S., Massebeuf, S., Kotai, B., Lang, P.,

Baudouin, P., Floquet, P., Gerbaud, V. 2008,

‘Hetrogenous batch distillation processes: Real

system optimisation’, Chemical Engineering and

Processing: Process Intensification, vol. 47, no. 3, pp.

408-419.

[12] Sutton, R.S. and Barto, A.G. 1998, Reinforcement

Learning: An Introduction, The MIT Press,

Cambridge, Massachusetts, London, England.

[13] Zhang, J., Smith, R. 2004, ‘Design and optimisation

of batch and semi-batch reactors’, Chemical

Engineering Science, vol. 59, no. 2, pp. 459-478.

