Available online at www.uofk.edu
Proceedings Vol. 1 pp. 9-15
Annual Conference of Postgraduate Studies and Scientific Research
17-20 February 2012-10-17 Friendship
Hall, Khartoum

Optimum Operation and Control of a Batch Chemical Process using
Reinforcement Learning

Mustafa, M.A.! and Wilson, J.A.2

!Department of Chemical Engineering, Faculty of Engineering, University of Khartoum

“Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham

Abstract: A Reinforcement learning (RL) approach is presented as a new automatic learning approach to the
problem of optimal operation and control of batch chemical processes (e.g. batch reactors and batch distillation
columns). The approach is particularly suited to batch process optimization problems, especially through not
assuming prior detailed process knowledge or availability of a process model. The particular suitability of RL as a
framework for optimising batch process operation has been recognised already (Martinez et al. (1998a,b)). In the
implementation of RL, use is made of how the plant responds to control actions aggregated in generalised
‘predictive’ models, each linking adjacent intra-batch decision steps. The relative worth of a control action at a
decision step is aggregated in the ‘value function’. Both the predictive models and the value function are learned
from the accumulating measurement data, batch-to-batch, starting from a small initial set of test batches. The
methodology is exemplified using two simple batch process case studies which were used to test the MATLAB
computer coding of the RL algorithm. In addition, issues regarding the structure of the initial training data set and

the embedded Neural Network have been investigated.

Keywords:

1. Introduction

Rising importance of high-value-added, low-volume
speciality chemicals has resulted in a renewed interest in
batch processing technologies (Diewkar, 1995) and the
drive for optimum operation is ever present. There is an
important literature covering the optimal operation and
control of batch chemical processes (Diwekar et al. (1995),
Mujtaba and Hussian (1998) and Zhang and Smith (2004),).
Although the classical approach to determining efficient
time profiles still depends upon having an accurate process
model (Aziz and Mujtaba (2002), Mujtaba et al. (2006) and
Pommier et al. (2008)), in practice such models are never
available partly because conditions and parameters vary
from one batch to another. Furthermore, the classical open
loop time profile can not react to measurements during the
progress of a batch. This is due to the fact that with some of
the models available, on-line measurements of the process
state are usually scarce and seldom instantaneous (Luyben
(1992)). Despite all those problems human operators have
managed so far to incrementally drive those processes to
near optimal operation. Hence batch process optimization
problems fit nicely with RL applications since no

9

knowledge of a process model is assumed by the approach.
Furthermore, research in general has focused on the other
problems in optimal operation and control besides
addressing the central issue of the unavailability of an
accurate process model in practice. Hence, the current work
was targeted at producing practical solutions to this control
problem.

2. Methodology

If an analysis of our learning during childhood is made, we
find that (for example) we learn to walk without the help of
an explicit teacher. Also learning how to talk, or even how
to behave in society when we are growing up. We tend to
learn according to trial and error interaction with our
environment and then go on reinforcing those actions we
took and resulted in better situations. Following this natural
process provides us with wealth of knowledge and
information about cause and effect, the results of different
actions and hence what to do to achieve certain goals.

RL algorithms could be seen as a way of providing a
computational approach focused on goal-directed learning
and decision making from interaction. Following the book

http://www.uofk.edu/

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

on the subject by Sutton and Barto (1998) one could define
RL, as simply being the mapping of situations to actions so
as to maximise a numerical reward gauged through a
Performance Index (PI). An important point to add is that
during learning, the algorithm is not told which actions to
take but must explore and exploit to discover actions that
yield the most reward by trying those actions. The RL
algorithm tends to learn an optimum control policy by
gathering data from a series of batch runs

Batch chemical process problems fit nicely with a typical
RL problem, characterised by setting of explicit goals,
breaking of problem into decision steps, interaction with
environment, sense of uncertainty, sense of cause and
effect. The main elements of RL comprise of an agent (e.g.
operator, software) and an environment (Sutton and Barto
(1998)). The agent is simply the controller, which interacts
with the environment by selecting certain actions. The
environment then responds to those actions and presents
new situations to the agent. The agent’s decisions are based
on signals from the environment, called the environment's
state. Figure 1 shows the main framework of Reinforcement
Learning.

Process goal
(e.g. achieve a certain
product purity)

Environment
(e.g. batch
distillation)

Agent
(e.g. operator)

Action
(e.g. reflux ratio)

Preferences

(e.g. consumption of least
amount of energy)

Environment state
(e.g. still pot temperature)

Prior knowledge
(e.g. experience)

Figure (1). Main framework of Reinforcement Learning.

The RL approach developed in this study is composed of a
combination of integrated techniques such as Neural
Networks (Carling (1992), Dynamic Programming
(Bellman (1957)) and Wire Fitting (Baird and Klopf
(1993)). Furthermore, predictive models are used to mimic
the forward dynamics of the process.

«+Pl,if a is a final action and the goal has been achieved,

Q(s,a)=1¢ -1,ifa is a final action and the goal has not been achieved,

emx Q (Sy08), Otherwise.
EBE
1)

where Pl is the Performance Index. Penalty of -1 is a
nominal value. Q (st,at) is a value function for a state action
pair.

The main aim of the RL algorithm is to optimize the
operation of the process through the following control law:

a =arg[max Q. a)])

aeQ

where Q represents the set of feasible control actions.

The RL approach could be seen (i.e. with reference to Wire
Fitting approximations) as a means of learning to identify
the optimal wire, or wires for the different states. Learning
the optimal wire is achieved by learning the weights and
biases in the Neural Network. The change in weights (A
weights) is then calculated as follows:

& Mean squared Bellman Error

A weights = —a
8 weights
@)
where o is referred to as the learning rate.
« PI’, if a, is afinal action
Q*(St'a‘t*) =
< max Q*(S,,1,8,,,), Otherwise.
A1 €
4)

Equation 4 is true only when the RL algorithm converges to
the actual optimal value function. During incremental
learning of the optimal value function, differences occur
which define the error: Bellman error. The mean squared
Bellman error (Bellman, 1957), Eg, is then used in the
approach to drive the learning process to the true optimal
value function (Equation 5 defines Eg for a given state-
action pair (s,ay)).

1 . AVC] . e .
<—EE[{PI -Q (s, aI) } } if & is a final action.

B

« % E H max Q' (Su1,2,1)—Q' (s, a:)} Z} , Otherwise.

()

3. Case Study

To test the implementation of the RL approach, two case
studies were used. The first consisted of non-overlap of
target states while the second provided a higher level of
complexity with overlap of target states. Thus the approach
has to learn how to respond with two different actions given
the same state but at different stages.

3.1 Case Study 1: Non-overlap of States in Target
Profile Data

A simple batch process was used in order to test the
MATLAB implementation of the RL algorithm already
developed and to study different aspects of the
methodology. The case study involves learning a
predefined profile shown in Figure 1, assuming that both
sample period and time constant is 1 hour. The relationship
between the current state S; and the one step ahead future
state Sy, is according to the first order relationship:

State

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

St~ O‘St+(l_a)at (6)
a7
where * € , T=1hour
Hence, the process is represented by
S,.,=0.36788g +0.63212g, (7)
$ 7295021 ~.
9
S 1.1=8.6466
S12=63212
y
< re—— >« >
T3 1hour T2 Lhr gy Lhour T

Figure (1). Pre-defined optimum profile (Optimal action =
10 at each decision step)

The Value Function was then defined as

t=T-1

PI =400~ 3 (5, 57" ®)
t=T-3

where st is the state at the time interval t and stpredefined is
the corresponding state following the predefined profile.
Hence, the Performance Index penalises deviations from
the profile of predefined states.

3.2 Case Study 2: Overlap of States in Target Profile
Data

The second approach towards testing robustness of
methodology, when faced with two similar states that
require different actions was through Case Study 2. The
case study involves the use of identical mid-range states in
the target profile. Figure 2 shows how defining similar
states at T-2 and T-1 modifies the Case Study 1.

Sr=11.4912

State | sp,=63212

4

T3 T-2 T-1 T

Figure (2). Case study 2 with identical mid-range states
in the target profile (optimal action is as follows: 10,
6.3212 and 14.5 at decision step T-3,T-2 and T-1
respectively)

St=11.4912

State | sy,=63212

4

T-3 T2 T-1 T

Figure (2). Case study 2 with identical mid-range states in
the target profile (optimal action is as follows: 10, 6.3212
and 14.5 at decision step T-3,T-2 and T-1 respectively)

The Value Function was then redefined as

t=T-1 2
predefined
Pl —400- Y 8*(s,~ 57" ©)
t=T-3
predefined
where st is the state at the time interval t and <t is

the corresponding state following the predefined profile. It
can be noticed that a factor of eight is introduced into the
definition of the Performance Index. Although the
optimization is not affected, the factor was introduced so as
to magnify the changes that occur in Pl

4. Results and Discussion

Once the case studies were defined, the computer coding of
the RL algorithm was applied to test for bugs in the
program. Furthermore, investigations were carried out in
the following areas of the methodology:

1. Structure of initial training data set.

2. Neural Network Topology.

3. Incremental learning of the Value Function.

4.1 Investigation into Structure of Initial Training Data
Set

One of the most important issues in RL applications is the
selection of the initial training data set (Neglecting
uncertainty in the process at this stage). For computer code
debugging (and testing) purposes, 50 non-overlapping batch
runs were used as the initial training data set. The purpose
of this was to provide enough training data, and to simplify
the problem for the RL algorithm. Simplification of the
problem lies in the use of non-overlapping data, which
would mean that there does not exist similar states at
different stages.

Using Case Study 1, learning of the Value Function was
performed for states at T-1, then progressed to include
states at T-2, and finally to include the initial state
(assuming all batches start from the same initial state). This
procedure was repeated four separate times using the same
training data set but starting from different initial weights in
the Neural Network. The results confirmed convergence of
the Reinforcement Learning algorithm as shown in Table 1.
The third run, shown in Table 1, provided the best result

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

with the lowest sum of squared error of the Neural Network which is the closest to the optimal value of 400.
outputs equal to 21.8338, and a value function of 399.978

Table (1). Performance of methodology while using 50 non-overlapping batch runs as the training data set (best run in

Run number SSE Pbr(()nlp()jc))sed action to take at stage Value Function
(BellmanerrorEg) T30 T-2 T-2t0 T-1 T-1to T
1 407.527 11.7672 9.9531 9.9531 398.5958
2 49.7399 10.0676 10.3848 9.9052 399.9298
3 21.8338 10.0122 9.8691 10.2436 399.978
4 61.6385 10.1695 10.2375 10.1412 399.9273

The next step was to try a smaller data set and hence a 20 data deals with the existence of similar states in different
non-overlapping training data set was used. Again learning stages, and how robust the methodology is in providing the
of the Value Function was repeated four times using the appropriate action for the same state at different stages. The
same 20 batch run training data set, but starting from following two approaches were used:

different initial weights in the Neural Network. 1. Use of an overlapping training data set
Convergence was achieved with the least value of SSE of 2. Use of a different case study (Case Study 2)where
the Neural Network of 10.23 and a value function of 399.9. overlapping states occur in the target profile data
The values of SSE for the other 3 runs were 10.9, 139.2 and Starting with the first approach, an overlapping training
159, data set of 50 batch runs was used and the algorithm was

executed four separate times, starting from different initial
Following the convergence of the algorithm so far, the random weights in the Neural Network. The results
complexity of the case study was increased to test cases produced are shown in Table 2.
where overlapping states occur. The issue of overlapping

Table (2). Performance of methodology while using an overlapping data set of 50 batch runs (the best case run is in bold

Run SSE Propc:;):(;)action to take at stage Value Function
number (Bellman error Eg) T-31t0 T-2 T-210 T-1 T1itoT
1 90.7925 9.2535 10.8504 9.7951 399.6448
2 16.7022 10.2081 9.3909 10.1042 399.866
3 62.8841 9.8576 10.7945 9.7459 399.7716
4 85.7716 9.8926 10.6302 9.963 399.843

Since, the optimal value function is 400, it is clear from the batch runs in the initial training data set affects the learning
results that the algorithm managed to learn the Value of the Performance Index. Again, using Case Study 2, the
Function (up to this point) using both overlapping and non- algorithm was executed using different initial training data
overlapping data. The second run provided the lowest sum sets ranging from 3 to 30 batch runs. The algorithm was
of squared error of the Neural Network equal to 16.70. repeated four separate times (for each data set) starting
Furthermore, an overlapping training data set of 30 batch from different initial random weights in the Neural
runs was used and applied to Case Study 2 with overlap of Network. Figure 3 shows the average value of the
states in target profile data. Convergence was still achieved performance (averaged over the four runs) as a function of
with the lowest SSE value of 21.19. The results prove that the number of batch runs in each initial data set. All cases
the RL algorithm is able to differentiate between different achieve near optimal values with the exception of using
actions to take regarding similar states in different stages. three batch runs, where the algorithm fails to converge.

Hence, the use of three initial batch runs could be suggested
The next step into the investigation of the initial training as an initial starting point for later implementation of the
data then revolved around determining how the number of full incremental RL algorithm to Case Study 2.

12

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

400

398

397

396

395

394

Performance Index

393

392

391

390

10

15 20 25 30

Number of batch runs in intial data set

Figure (3). Average Performance Index Vs number of batch runs in initial data set for Case Study 4.2

4.2 Investigation into Neural Network Topology

Case Study 2 was used to investigate the effect of the
Neural Network Topology on the learning of the Value
Function. The use of three wires for the Value Function
approximation fixes the number of output nodes in the
Neural Network to three nodes. As for the number of nodes
and hidden layers, a simple Neural Network with one node
in the hidden layer was used followed by a gradual increase
in the complexity of the NN. Using a training data set of 50
random batches, the algorithm was repeated three separate
times (starting from different initial training weights in the

4

Neural Network) for different Neural Network
architectures. The number of nodes used ranged from 1 to 8
where any increase in the complexity of the Neural
Network was terminated due to the sum of squared error of
the NN reaching extremely high values. The results in
Figure 4 show the log of the sum of squared errors of the
Neural Network for the best case when different numbers of
nodes in the hidden layer is used. The results show that the
use of four nodes in the hidden layer gives the best
performance (lowest SSE) for Case Study 2.

[
5

w

N
o

N

=
«»

[

Log of SSE of Neural Network

o
o

3 4

5 6

Number of nodes in hidden layer

Figure (4). Effect of number of nodes in hidden layer on the performance of the Neural Network

13

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

4.3 Incremental Learning of the Value Function

Up to this point the Reinforcement Learning algorithm had
only been partially implemented by restricting the
algorithm to learn only from a pre-set number of initial
batch runs. From this stage onwards, the full RL algorithm
is implemented with incremental batch to batch learning.
Incremental Learning refers to the execution of the
following steps: Step 1 (Start with a small initial training
data set), Step 2 (Learn the Value Function for the current
data set), Step 3 (Calculate and implement new control
profile of manipulated variables during course of next new
batch run), Step 4 (Add data from the new batch run to the

400

current training data set), Step 5 (Repeat Steps 2, 3, and 4
until a convergence criterion is met).

Previous results on the number of training data batches
(Figure 3) show that learning was not complete for the case
with only three initial batch runs. Hence, an initial training
data set of three batch runs was used before implementing
the full incremental RL algorithm to Case Study 2. Figure 4
shows how the RL algorithm manages to incrementally
learn the Value Function, over subsequent batches,
converging to a value of 399.98.

398

396

394

392

390

Performance Index

388

386 +—

384

1 2 3 4 5

6 7 8 9 10 11

Number of batch runs in training data set

Figure (4). Incremental improvement in Performance Index with increase in number of batch runs for Case Study 2
(The dotted line refers to the Performance Index values of the 3 initial batch runs)

5. Conclusion

The simple batch process case studies presented excellent
candidates for testing the RL algorithm. In addition,
different layers of complexity were easily added in order to
gain insight into various issues regarding the RL algorithm.
The simple case studies have allowed the computer coding
in MATLAB, of the RL algorithm, to be thoroughly
debugged and tested. As for the RL algorithm, it was shown
to be able to identify the appropriate action required when
faced with similar values of states at different stages.
Finally, concerning the Neural Network topology, the use
of four nodes in the hidden layer gave the best results for
Case Study 2. Also a minimum of 3 batches for the training
data set were required. Hence, a minimum of four nodes in
the hidden layer and 3 batches for the training data set
could be suggested for use in future RL applications.

Notation

a control action at time t

E squared error

Eg mean squared Bellman error

Q(s,,a,) Value Function for state action pair at time t
Pl Performance Index

RL Reinforcement Learning

S, Process state at time t

o learning rate

Q set of feasible control actions

Mustafa, M.A. and Wilson, J.A. / Proceeding Vol. 1 pp9-15 (February 2012)

Subscripts and Superscripts

T Time

T final time step
* Optimum
REFERENCES

[1] Aziz, N., Mujtaba, M. 2002, ‘Optimal operation
polices in batch reactors’, Chemical Engineering
Journal, vol. 85, no. 2-3, pp. 313-325.

[2] Baird, L.C. and Klopf, A.H. 1993, Reinforcement
Learning with High-dimensional Continuos Actions,
Technical Report ~ WL-TR-93-1147, Wright
Laboratory, Wright Patterson Air Force Base.

[3] Bellman, R. 1957, Dynamic Programming, Princeton
University, Press, Princeton, New Jersey.

[4] Carling A. 1992, Introducing Neural Networks,
SIGMA Press, UK

[5] Diwekar, U.M. 1995, Batch Distillation: Simulation,
Optimal Design and Control, Carneige Mellon
University, Pittsburg, Pennsylvania.

[6] Luyben, W.L. 1992, Practical distillation control. Van
Nostrand Reinhold, New York, USA.

[7] Martinez, E.C, Pulley, R.A., and Wilson, J.A. 1998a,
‘Learning to Control the Performance of Batch
Processes’, Chemical Engineering Research &
Design, vol. 76(A6), pp. 711-722.

[8] Martinez, E.C, and Wilson, J.A. 1998b, ‘A Hybrid
Neural Network First Principles Approach to Batch
Unit Optimisation’, Computer & Chemical
Engineering, Suppl. 22:5893-S896.

[9] Mujtaba, LM, Aziz, N., Hussain, M.A 2006, ‘Neural
Network Based Modelling and control in Batch
Reactor’, Chemical Engineering Research and
Design, vol. 84, no. 8, pp. 635-644.

[10] Mujtaba, .M. and Hussain, M.A. 1998, ‘Optimal
Operation of Dynamic Processes Under Process-
Model Mismatches: Application to Batch
Distillation’, Computers & chemical. Engineering,
vol. 22, Suppl., S621-5624.

[11] Pommier, S., Massebeuf, S., Kotai, B., Lang, P.,
Baudouin, P., Floquet, P., Gerbaud, V. 2008,
‘Hetrogenous batch distillation processes: Real
system optimisation’, Chemical Engineering and
Processing: Process Intensification, vol. 47, no. 3, pp.
408-419.

[12] Sutton, R.S. and Barto, A.G. 1998, Reinforcement
Learning: An Introduction, The MIT Press,
Cambridge, Massachusetts, London, England.

[13] Zhang, J., Smith, R. 2004, ‘Design and optimisation
of batch and semi-batch reactors’, Chemical
Engineering Science, vol. 59, no. 2, pp. 459-478.

15

