
 
 

171 

 

 

 

A New MSB Modular multiplication Algorithm and its Implementation  

using 4-2 Compressor  

Kauther M. Amer Ahmad S.Ashor 
 

College of Communication Engineering, Academy of Graduate Studies, 

 Tripoli, Libya  

 

Abstract: Currently, enhancing the performance of modular multiplication is very important for high performance 

microprocessors. Multiplication is inherently a slow operation as a large number of partial products. In this paper, 

Implementation of MSB modular multiplication using 4-2 compressor using the last two most significant bits is 

introduced. Using the two most significant bits (MSB's) for reduction in this technique, we will avoid the use of 

the carrier so, no carry store. However, we don’t need to use the feedback which used in Montgomery 

Multiplication [13]. The total power-efficiency (power-delay-product) is reduced using low-power low-voltage 4-2 

compressors. The circuits implemented using Matlab simulation. 
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1. INTRODUCTION 

 

Recently computer security is one of the most important 

issues which have a wide attention from scholarships. 

Therefore computer cryptography becomes more and more 

important. 

Modular multiplication is a widely used operation in 

cryptography. Several well-known applications, such as 

RSA algorithm, Digital Signature and elliptic curve 

cryptography, all use modular multiplication and modular 

exponentiation. 

Multipliers implemented in hardware are generally faster 

than the software solutions. A small speed up for a single 

multiplication operation can lead to a substantial speed up 

for the cryptographic applications. 

Some of the applications required the multiplication to be 

achieved at a faster rate while others tend to exploit less 

hardware and therefore more modest speed. In order to 

meet the demand of these applications, various design 

strategies have been exploited. 

Many algorithms for modular multiplication have been 

proposed in the past [3]–[11]. 

In this work, we first present Modular Multiplication 

Algorithm using the two MSB's for reduction; we introduce 

an example to illustrate the modular multiplication 

algorithm. 

The next section introduces the Modular multiplier using 4-

2 compressor and then the Simulation Using MatLab is 

illustrated. 

The conventional CMOS 4-2 compressor is replaced by the 

low-power 4-2 compressors presented in [2], In the next 

section; this compressor circuit contains 2 delays XOR 

which was 4 delays XOR in the previous compressor. The 

paper is ended by Conclusion and then References. 

 

2. Modular Multiplication Algorithms 
 

n RSA, the public encryption key is a pair of positive 

integers (E ,N), and the private decryption key is another 

pair of positive integers (D,N). To encrypt a message using 

the key (E,N), we first partition the message (a string of 

bits) into a sequence of blocks, and consider each block as 

an integer between 0 and N - 1. Then, we encrypt the 

message by raising each block M to the E th power modulo 

N , i.e., C=M
E
 mod N  for each message block M . 

Similarly, to decrypt the ciphertext using the key (D,N), we 

raise each ciphertext block to the power D modulo N, i.e., 

M=C
D
 mod N  for each ciphertext block C . Exponentiation 

is performed by repeated (iterated) squaring and 

multiplication operations. Let the binary representation of 

the exponent E be en-1 en-2 …..e1 e0 , then 

       
A simple way to perform modular exponentiation is to 

repeat the modular squaring and modular multiplication 

operations. 

 

2.1 The New  MSB Modular Multiplication Algorithm 

The following is the notation used throughout this 

algorithm: 
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 M – modulus for modular multiplication. 

 A  – multiplier operand for modular multiplication. 

 ai – a single bit of A at position i . 

 B –  multiplicand operand for modular 

multiplication. 

 N – number of bits in the operands, operand's 

precision. 

 Si – partial product in the multiplication process, final 

result of modular multiplication. 

The algorithm require that M is prime, and   

 2
(n-1)

 <  M > 2
(n)

  
 

Table  (1). Radix-2 MSB Modular Multiplication Algorithm 

 

 

 

 

 

 

 

 

 

 

 

The main advantage of this algorithm is that we use the carrier in 

the reduction process so we don’t need the feed back in our 

implementation. 

Radix–2 denotes that the multiplier A is scanned one bit in each 

iteration of the loop, called computational loop or 

computational cycle. 

In each computational loop the multiplicand B is added to the 

partial product S depending on two bits on the multiplier A. The 

most significant bits (MSB's) S(n) & S(n-1) of the previous 

summation of S are shifted away in Step 3. These bits are used 

for reduction, the reduction is based on the table below: 

 

                                  Table (2). reduction cases 

S(n) S(n-1) Operation 

0 0 (no add) 

0 1 Add (complement M) +1 to S 

1 0 Add Right Shift of ((complement M) +1) to S 

1 1 Add (complement M) +1 to S and 

Add Right Shift of ((complement M) +1) to S 

 

In modular arithmetic adding\subtracting the modulus 

to\from a number does not affect the the number's value. 

After the last iteration of the loop S holds the multiplication 

result, the final result must be a number less then the 

modulus. Therefore, in Step 5., called final reduction step, 

of this algorithm S is compared to M and is adjusted if 

needed. 

2.2 Example to illustrate the algorithm  

 Assume that we have two binary numbers A(a3,a2,a1,a0) 

and B (b3,b2,b1,b0) ; A=11=[1011] and B=12=[1100] and 

the modular M=13=[1101] 

We first calculate the complement of M which is named M', 

and then add M' to 1 

M'+1=[0011] 

To calculate 11*12 mod 13 

B         1  1  0  0 

A         1  0  1  1         

       ___________ 

S      0  0  0  0  0 

a3*B       1  1  0  0 

M'+1       0   0  0  0               (no add) 

         ____________ 

S         0   1  1  0  0 

a2*B           0  0  0  0 

M'+1           0  0  1  1           Add (complement M) +1  

             ____________ 

S             0   1  0  1  1 

a1*B               1  1  0  0 

M'+1               0  0  1  1        Add (complement M) +1 

     ____________ 

S                 1   0  1  0  1 

a0*B                   1  1  0  0 

M'+1               0  0  1  1  0        Add Right Shift of 

((complement M) +1) 

     ____________ 

S                     1   1  1  0   0        S > M      

S – M                 1   1  0   1 

           ____________ 

S                        1   1   1   1        S > M 

S – M                 1   1  0   1 

             ____________ 

S                        0   0   1   0        S < M      The final result 

Step The algorithm 

1: 

2: 

3: 

4: 

 

5: 

 

S=0 

FOR i=n-1 to 0 

       S=2S 

       S=S+ a*B +Sn* ((complement M) +1) +s (n-1)* 2*( (complement M) +1) 

END FOR 

IF S>= M THEN   S=S-M 

END IF 
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As discussed above  we started with the MSB of A whish 

a3 and multiply it by B, in the first iteration the two most 

significant bits (MSB's) of S (s4 &s3) in the previous 

iteration are (0 0) then in this case (no add) which 

illustrated in Table 2. 

In the second iteration S was (0 1) that means we will add S 

(after shift it in 2S) to the product a2*B and Add 

(complement M) +1. The same procedure is repeated in the 

other iterations. 

The last result of S > M so we need to subtract S – M  and 

repeat this step until S<M to have the final result. 

 

3. The MSB Modular multiplier: 

The proposed implementation of the modulo multiplier 

consists of four stages, for (n=4), each stage contains 4 

compressors, and 5 FA. 

For reduction we use one half adder and one XOR to 

calculate the n and n+1 MSB bits and use these bits for 

reduction.  

We use a 4-2 compressor which consists of five inputs and 

three outputs and which implemented with two stages of 

full-adders (FA) connected in series as shown in Fig.1. 

 
Fig. (1). 4-2 Compressor composed of two FAs. 

The circuit of the MSB Modular multiplier is in the fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2).  The MSB Modular multiplier using 4-2 Compressor composed of two FAs 
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4. Simulation of the circuit: 

 

The Modular multiplier is simulated using Matlab as 

shown below: 

 

 

 

 

Fig. (3). One stage of the simulated circuit. 

 
 

 
 

 

Fig. (4). The 4-2 Compressor contain by two full adders connecting as below 
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5. The MSB Modular multiplier: 

 

Various approaches have been proposed in the literature to 

improve the 4-2 compressor efficiency.  In [2], the low-

power low-voltage 4-2 compressors is presented, we use 

this compressor in our MSB modular multiplier to have 

more efficiency by decreasing the XOR delay. The circuit 

of the second 4-2 compressor in fig 5 

 

 
Fig. (5). Compressor composed of two FAs. 

 

The same previous circuit of the Modular multiplier is used 

but the compressor circuit is exchanged to the low-power 

low-voltage 4-2 compressors which in fig 5. 

The number of the XORs in the compressor is reduced by 

half when we used this construction.  

 

6. Comparison and evaluation: 

 

A performance comparison of the new proposed 

architectures with similar structures available in the 

literature [,,] in terms of both the time, number of latches 

and the area is presented in Table 4. 

It should be mentioned that the unit gate area (GA) and the 

unit gate delay (∆) represent the area required and the 

propagation delay of a NAND gate or of a NOR gat. The 

area required (A) and the propagation delay (T) for the 

typical gate functions, a full adder, 2-bit Multiplexer 

(MUX),and a latch are listed in Table 3 according to 

references [,,] 

 

Table (3). area required (A) and the propagation delay (T) for the typical gate functions 

Structure or Gate Function Area (A) Propagation Delay (T) 

AND A
AND

 = 2G
A
 T

TND
=2∆ 

OR A
OR

=2 G
A
 T

OR
=2∆ 

NAND A
NAND

=1 G
A
 T

NAND
=1∆ 

NOR A
NOR

=1 G
A
 T

NOR
=1∆ 

Inverter(INF) A
INF

=1 G
A
 T

INF
=1∆ 

XOR A
XOR

=3 G
A
 T

XOR
=3∆ 

Full Adder (FA) A
FA

=10 G
A
 T

FA
=6∆ 

2-bit Multiplexer (MUX) A
MUX

=4 G
A
 T

MUX
=3∆ 

Latch A
Latch

=7 G
A
 T

Latch
=5∆ 

 

7. Conclusion 
 

The algorithm and implementation of MSB modular 

multiplier using 4-2 compressor is presented.  This 

algorithm avoids carry store and feedback which used in 

Montgomery multiplier [13]. The use of the low-power 

low-voltage 4-2 compressors, improve the total delay. A 

generalization of this algorithm for higher radix can be 

using booths algorithms. 
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