

171

A New MSB Modular multiplication Algorithm and its Implementation

using 4-2 Compressor

Kauther M. Amer Ahmad S.Ashor

College of Communication Engineering, Academy of Graduate Studies,

 Tripoli, Libya

Abstract: Currently, enhancing the performance of modular multiplication is very important for high performance

microprocessors. Multiplication is inherently a slow operation as a large number of partial products. In this paper,

Implementation of MSB modular multiplication using 4-2 compressor using the last two most significant bits is

introduced. Using the two most significant bits (MSB's) for reduction in this technique, we will avoid the use of

the carrier so, no carry store. However, we don’t need to use the feedback which used in Montgomery

Multiplication [13]. The total power-efficiency (power-delay-product) is reduced using low-power low-voltage 4-2

compressors. The circuits implemented using Matlab simulation.

Keywords: MSB modular multiplier; modular multiplication algorithm; 4-2 compressor.



1. INTRODUCTION

Recently computer security is one of the most important

issues which have a wide attention from scholarships.

Therefore computer cryptography becomes more and more

important.

Modular multiplication is a widely used operation in

cryptography. Several well-known applications, such as

RSA algorithm, Digital Signature and elliptic curve

cryptography, all use modular multiplication and modular

exponentiation.

Multipliers implemented in hardware are generally faster

than the software solutions. A small speed up for a single

multiplication operation can lead to a substantial speed up

for the cryptographic applications.

Some of the applications required the multiplication to be

achieved at a faster rate while others tend to exploit less

hardware and therefore more modest speed. In order to

meet the demand of these applications, various design

strategies have been exploited.

Many algorithms for modular multiplication have been

proposed in the past [3]–[11].

In this work, we first present Modular Multiplication

Algorithm using the two MSB's for reduction; we introduce

an example to illustrate the modular multiplication

algorithm.

The next section introduces the Modular multiplier using 4-

2 compressor and then the Simulation Using MatLab is

illustrated.

The conventional CMOS 4-2 compressor is replaced by the

low-power 4-2 compressors presented in [2], In the next

section; this compressor circuit contains 2 delays XOR

which was 4 delays XOR in the previous compressor. The

paper is ended by Conclusion and then References.

2. Modular Multiplication Algorithms

n RSA, the public encryption key is a pair of positive

integers (E ,N), and the private decryption key is another

pair of positive integers (D,N). To encrypt a message using

the key (E,N), we first partition the message (a string of

bits) into a sequence of blocks, and consider each block as

an integer between 0 and N - 1. Then, we encrypt the

message by raising each block M to the E th power modulo

N , i.e., C=M
E
 mod N for each message block M .

Similarly, to decrypt the ciphertext using the key (D,N), we

raise each ciphertext block to the power D modulo N, i.e.,

M=C
D
 mod N for each ciphertext block C . Exponentiation

is performed by repeated (iterated) squaring and

multiplication operations. Let the binary representation of

the exponent E be en-1 en-2 …..e1 e0 , then

A simple way to perform modular exponentiation is to

repeat the modular squaring and modular multiplication

operations.

2.1 The New MSB Modular Multiplication Algorithm

The following is the notation used throughout this

algorithm:

 Available online at www.uofk.edu
Proceedings Vol. 1 pp. 171-176

Annual Conference of Postgraduate Studies and Scientific Research

17-20 February 2012-10-17 Friendship

 Hall, Khartoum

I

http://www.uofk.edu/

Kauther M. Amer Ahmad S.Ashor / Proceeding Vol. 1 pp. 171-176 (February 2012)

172

 M – modulus for modular multiplication.

 A – multiplier operand for modular multiplication.

 ai – a single bit of A at position i .

 B – multiplicand operand for modular

multiplication.

 N – number of bits in the operands, operand's

precision.

 Si – partial product in the multiplication process, final

result of modular multiplication.

The algorithm require that M is prime, and

 2
(n-1)

 < M > 2
(n)

Table (1). Radix-2 MSB Modular Multiplication Algorithm

The main advantage of this algorithm is that we use the carrier in

the reduction process so we don’t need the feed back in our

implementation.

Radix–2 denotes that the multiplier A is scanned one bit in each

iteration of the loop, called computational loop or

computational cycle.

In each computational loop the multiplicand B is added to the

partial product S depending on two bits on the multiplier A. The

most significant bits (MSB's) S(n) & S(n-1) of the previous

summation of S are shifted away in Step 3. These bits are used

for reduction, the reduction is based on the table below:

 Table (2). reduction cases

S(n) S(n-1) Operation

0 0 (no add)

0 1 Add (complement M) +1 to S

1 0 Add Right Shift of ((complement M) +1) to S

1 1 Add (complement M) +1 to S and

Add Right Shift of ((complement M) +1) to S

In modular arithmetic adding\subtracting the modulus

to\from a number does not affect the the number's value.

After the last iteration of the loop S holds the multiplication

result, the final result must be a number less then the

modulus. Therefore, in Step 5., called final reduction step,

of this algorithm S is compared to M and is adjusted if

needed.

2.2 Example to illustrate the algorithm

 Assume that we have two binary numbers A(a3,a2,a1,a0)

and B (b3,b2,b1,b0) ; A=11=[1011] and B=12=[1100] and

the modular M=13=[1101]

We first calculate the complement of M which is named M',

and then add M' to 1

M'+1=[0011]

To calculate 11*12 mod 13

B 1 1 0 0

A 1 0 1 1

S 0 0 0 0 0

a3*B 1 1 0 0

M'+1 0 0 0 0 (no add)

S 0 1 1 0 0

a2*B 0 0 0 0

M'+1 0 0 1 1 Add (complement M) +1

S 0 1 0 1 1

a1*B 1 1 0 0

M'+1 0 0 1 1 Add (complement M) +1

S 1 0 1 0 1

a0*B 1 1 0 0

M'+1 0 0 1 1 0 Add Right Shift of

((complement M) +1)

S 1 1 1 0 0 S > M

S – M 1 1 0 1

S 1 1 1 1 S > M

S – M 1 1 0 1

S 0 0 1 0 S < M The final result

Step The algorithm

1:

2:

3:

4:

5:

S=0

FOR i=n-1 to 0

 S=2S

 S=S+ a*B +Sn* ((complement M) +1) +s (n-1)* 2*((complement M) +1)

END FOR

IF S>= M THEN S=S-M

END IF

Kauther M. Amer Ahmad S.Ashor / Proceeding Vol. 1 pp. 171-176 (February 2012)

173

As discussed above we started with the MSB of A whish

a3 and multiply it by B, in the first iteration the two most

significant bits (MSB's) of S (s4 &s3) in the previous

iteration are (0 0) then in this case (no add) which

illustrated in Table 2.

In the second iteration S was (0 1) that means we will add S

(after shift it in 2S) to the product a2*B and Add

(complement M) +1. The same procedure is repeated in the

other iterations.

The last result of S > M so we need to subtract S – M and

repeat this step until S<M to have the final result.

3. The MSB Modular multiplier:

The proposed implementation of the modulo multiplier

consists of four stages, for (n=4), each stage contains 4

compressors, and 5 FA.

For reduction we use one half adder and one XOR to

calculate the n and n+1 MSB bits and use these bits for

reduction.

We use a 4-2 compressor which consists of five inputs and

three outputs and which implemented with two stages of

full-adders (FA) connected in series as shown in Fig.1.

Fig. (1). 4-2 Compressor composed of two FAs.

The circuit of the MSB Modular multiplier is in the fig.2.

Fig. (2). The MSB Modular multiplier using 4-2 Compressor composed of two FAs

Kauther M. Amer Ahmad S.Ashor / Proceeding Vol. 1 pp. 171-176 (February 2012)

174

4. Simulation of the circuit:

The Modular multiplier is simulated using Matlab as

shown below:

Fig. (3). One stage of the simulated circuit.

Fig. (4). The 4-2 Compressor contain by two full adders connecting as below

Kauther M. Amer Ahmad S.Ashor / Proceeding Vol. 1 pp. 171-176 (February 2012)

175

5. The MSB Modular multiplier:

Various approaches have been proposed in the literature to

improve the 4-2 compressor efficiency. In [2], the low-

power low-voltage 4-2 compressors is presented, we use

this compressor in our MSB modular multiplier to have

more efficiency by decreasing the XOR delay. The circuit

of the second 4-2 compressor in fig 5

Fig. (5). Compressor composed of two FAs.

The same previous circuit of the Modular multiplier is used

but the compressor circuit is exchanged to the low-power

low-voltage 4-2 compressors which in fig 5.

The number of the XORs in the compressor is reduced by

half when we used this construction.

6. Comparison and evaluation:

A performance comparison of the new proposed

architectures with similar structures available in the

literature [,,] in terms of both the time, number of latches

and the area is presented in Table 4.

It should be mentioned that the unit gate area (GA) and the

unit gate delay (∆) represent the area required and the

propagation delay of a NAND gate or of a NOR gat. The

area required (A) and the propagation delay (T) for the

typical gate functions, a full adder, 2-bit Multiplexer

(MUX),and a latch are listed in Table 3 according to

references [,,]

Table (3). area required (A) and the propagation delay (T) for the typical gate functions

Structure or Gate Function Area (A) Propagation Delay (T)

AND A
AND

 = 2G
A
 T

TND
=2∆

OR A
OR

=2 G
A
 T

OR
=2∆

NAND A
NAND

=1 G
A
 T

NAND
=1∆

NOR A
NOR

=1 G
A
 T

NOR
=1∆

Inverter(INF) A
INF

=1 G
A
 T

INF
=1∆

XOR A
XOR

=3 G
A
 T

XOR
=3∆

Full Adder (FA) A
FA

=10 G
A
 T

FA
=6∆

2-bit Multiplexer (MUX) A
MUX

=4 G
A
 T

MUX
=3∆

Latch A
Latch

=7 G
A
 T

Latch
=5∆

7. Conclusion

The algorithm and implementation of MSB modular

multiplier using 4-2 compressor is presented. This

algorithm avoids carry store and feedback which used in

Montgomery multiplier [13]. The use of the low-power

low-voltage 4-2 compressors, improve the total delay. A

generalization of this algorithm for higher radix can be

using booths algorithms.

REFERENCES

[1] Martin Margala and Nelson G. Durdle," low-power

low-voltage 4-2 compressors for VLSI applications ",

IEEE- 1999.

[2] D. Radhakrishnan, A.P. Preethy, "Low Power CMOS

Pass Logic 4-2 Compressor for High-speed

Multiplication", IEEE-Aug, 2000.

[3] G.R. Blakley, “A computer algorithm for the produlo

m,” IEEEtRANS. Comput., vol.C-32, pp. 497-500,

1983

[4] E. F. Brickell. “A fast modular multiplication

algorithm with application to two-key cryptography,”

in Proc. CRYTO’ 82 Advances Cryptology, 1982, pp.

51-60.

[5] -,” A survey of hardware implementations of RSA,”

IN P ROC. Crypto’89 Advances Cryptology, Berlin ,

Germany , 1989, pp.368-370.

[6] H. Orup and P. Kornerup, “ Ahigh-radix hardware

algorithm for calculating the exponential M
E
 modulo

Kauther M. Amer Ahmad S.Ashor / Proceeding Vol. 1 pp. 171-176 (February 2012)

176

N,” IN Proc. 10
th

 IEEE Symp. Comput. Arithmetic,

Grenoble, , France, june1991, pp.51-56.

[7] P.Kornerup, “High-radix modular multiplication for

cryptosystems,” in Proc.11
th
 IEEE Symp. Comput.

Arithmetic, Windsor, ON , Canada, June 1993, pp.

277-283.

[8] C. K. Koc, “ RSA Hung, “ Bit-level systolic arrays for

modular multiplication “J. VLSI Signal Processing,

vol. 3 no. 3, pp. 215-223,1991.

[9] C. K. Koc, “RSA Hardware Implementation.” RSA

Laboratories, Tech. Rep., RSA Data Security Inc.,

Redwood, CA, 1995.

[10] N.Takagi and S. Yajima, “Modular multiplication

hardware algorithms with a redundant representation

and their application to RSA cryptosystem,” IEEE

Trans. Comput., vol. 41, pp. 887-891, July 1992.

[11] N.Takagi, “ Aradix-4 modular multiplication

hardware algorithm for modular exponentiation, “

IEEE Trans. Comput., vol. 41, pp. 949-956, Aug.

1992.

[12] ThesisGeorgi Todorov "ASIC Design Implementation

and Analysis of A Scalable High- Radix Montgomery

Multiplier" ,December 2000

[13] Jin-Hua Hong, Member, IEEE, and Cheng-Wen Wu,

Senior Member, IEEE "Cellular-Array Modular

Multiplier for Fast RSA Public-Key Cryptosystem

Based on Modified Booth’s Algorithm" 2003

