Available online at www.ejournals.uofk.edu

Proceedings Vol. 6 pp. 10-19
7th Annual Conference for Postgraduate Studies and Scientific Research
Basic Sciences and Engineering Studies - University of Khartoum
Theme: Scientific Research and Innovation for Sustainable Development in Africa
20-23 February 2016, Friendship Hall, Khartoum, Sudan

An Efficient FPGA-based Design and Implementation of AES Algorithm

Mayada E. Mohamed®, Sharief F. Babiker?

'Department of Ground station, Institute of Space Research and Aerospace(ISRA),
Khartoum, Sudan (E-mail: mayadaelsir@hotmail.com)
’Department of Electrical and Electronic Engineering, University of Khartoum,
Khartoum, Sudan (E-mail: shariefbabikir@gmail.com)

Abstract: This paper presents an FPGA based hardware design and implementation of a 128 bit AES encryption
processor. Synthesis is achieved using Verilog code implemented on the FPGA. Two different architectures are
presented, the basic iterative architecture which achieves low FPGA resources requirements, 347 slices and 10
BRAM and a maximum throughput is 1.3988Gbps. And the fully pipelined architecture of AES encryption
processor for higher speed applications. The second architecture achieved 31.4574 Gbps as maximum throughput
and using 30 Block RAM. These designs utilize the low cost and low power Spartan3E™ FPGA. Hardware
verification has been performed on the Spartan-3E starter board (xc3s500e-4) and the results were similar to

simulation results.

Keywords:AES; FPGA; S-Box; pipeline; Verilog; FSM; Spartan-3E.

1. INTRODUCTION

The Advanced Encryption Standard also known as Rijndael is
the standard symmetric key block cipher known for its robust
security properties and simple implementation in both
hardware and software [1]. It is capable of supporting block
length of 128 bits and key lengths of 128, 192 and 256 bits [8].
The actual key size depends on the desired security level. The
different versions are most often denoted as AES-128, AES-
192, and AES-256. AES algorithm encrypts 128-bit blocks of
plain text by repeatedly applying the same round
transformation, as outlined in Fig. 1 [1] [9] [10]. AES-128
applies the round transformation 10 times, AES-192 uses 12,
and AES-256 uses 14 iterations [7].

The AES algorithm can be efficiently implemented in
hardware or software. Software implementations are very
resourceful, but they offer a limited physical security and
slower processing. In addition to the growing requirements for
high speed, high volume secure communications combined
with physical security, hardware implementation of
cryptography takes place. The AES algorithm hardware
implementation is faster and more secure than software
implementation. There have been various hardware
implementations of AES for ASIC e.g. [2], [5], [7] and [30]

10

and FPGA, e.g. [22], [23], [26], [34] and [35]. FPGA
implementation is an intermediate solution between general
purpose processors (GPPs) implementation and application
specific integrated circuits (ASICs) implementation.This has
the benefits of being customizable, and the cost of an FPGA
can be less than the more powerful CPU.

Using an FPGA should result in a fair gain in performance.
The design and implementation of AES encryption processor
on the low cost and low power Spartan-3E FPGA is presented
in this paper. Two architectures are presented; the first feature
is the relatively low speed (1.39Gbps) and low FPGA
resources (347 slices and 10 Block RAM) which makes it
suitable for most low-end embedded applications.

The second feature is the high throughput (31.4574Gbps) in
which a fast and area efficient composite field implementation
of the byte substitution phase is designed using an optimum
number of pipeline stages. Hardware verification has been
done on the Spartan-3E starter board and the results were
similar to simulation results.

http://www.ejournals.uofk.edu/
mailto:mayadaelsir@hotmail.com

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

air

U

Tekt |

i
|
|

Key

| AddRoundKey é===] Round Key

1l /)
9 Rounds

SubBytes

Key
Expansion

Round Key Unit

] Round

Round Key

J

Fig.1: AES Process Block Diagram

1.1 Description OfAes Algorithm

The main functions and a block diagram of the algorithm are
shown in Fig. 3. The function SubBytes performs a non-linear
transformation on each byte of the input stateindependently
[1]. It substitutes all bytes of the State using a look-up table
called S-Box as can be seen in Fig. 2.

. 4 . . S-Box
So.0 | o1 | So.2 },———-‘ > | o3
I |
5 5. Fooey | San K3
'] 2.1 2.2 2.3 . 2 2
Seo | Si0 | S, S, s Sai | S e

Fig.2:SubBytes function operates on state [1]

The ShiftRows step is a straightforward byte transposition. It
rotates the rows of the state to the left by an offset. The offset
equals the row index, the first row is not rotated at all; the
second, third and fourth rows are rotated to the left by one,
two and three bytes respectively as shown in Fig. 3.

The MixColumns transformation operates on the columns of
the state in which the four elements of each column are treated
as a four-term polynomial. The four elements of each column
are multiplied by a constant polynomial and reducing to x*+4.

11

S0.0 | Soa1 | So.2 | S0 So0.0 | Soa | So.2 | Sos
Sior | S5 | Sien |5t plEEN Six | Sio: | S | Siio
Spo| S2n | S22 |S2s | (B | S2n | S2s | S20 | S

Fig.3:ShiftRows operates on the rows of the state [1]

The mapping between input and output of MixColumns is
defined by the matrix multiplication given in Eq. 1.
bo, 2 3 1 1\ /%
bie|_[1 2 3 1][@ 1)
by, 1 1 2 3|z
\bu / 3 1 1 2/ \asc

The key addition is the final cipher function denoted
AddRoundKey. In which, the current state is modified by
combining it with current round key using bit-wise XOR
operation.

2. HARDWARE DESIGN

The datapath block diagram of the proposed architecture
design is shown in Fig. 4. A 128-bit architecture is used to
offer the greatest degree of parallelism to increase
concurrency of AES computations that leads to a higher
throughput. The whole AES hardware blocks are composed of
five operational modules, which are the SubBytes, the
ShiftRows, the Mix- Columns, the AddRoundKey and the Key
expansion circuits. In the following sections, the design of
high performance architectures for the Sub-Bytes, the
MixColumns and the Key expansion operational modules are
described.

2.1 Subbytes

S-Box based on Galois Field GF(2®) is directly constructed by
performing two transformations; first taking a multiplicative
inverse in the Galois Field GF(2%) and then applying the
standard affine transformation over Galois Field GF (2°) [6].
The polynomial representation in GF(2°%) is

b(x)= b’ x" +b° x° +b° x° +b* x* +b® x* +b% x* +x+ 1.

1) Affine Transformation:
The affine transformation f can be described as a polynomial
multiplication, followed by the XOR with a constant as
outlined in Eq.2 [4].

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

b7=a7@a6@a5®a4®a3
bg=acDasda,dazda,
bs=as®a,@a;@a,Da,
by,=a,®a3;®@a,®a;®a, @)
bz=a,;®a;da,da;da,
b2=a7®a6 @az ®a1®a0
b1=a;®a,®as®a;®a,
bo_a7®a6®a5®a4®a0

2) Multiplicative Inversion in GF(2®):

Key

Expansion
Round Key
128 128 .
Key Add Round 123 AES Round 12;C|pher Text
P . 7
Plain Text—z-—s| Key - Transformation |
28 = S
e ’ N
i 128 AN
e N
// N,
e \\
_~” SubBytes Mix columns S
e N\
g L] seox || g 2 | 32t |32 Add Round ™
1 U MixCol
2] e |1 Key |
|
w
5 5'2‘“ L1 Ex 32 [32t |32 |
- > MixCol [|
X 128 -umns }
9/[S-Box g —
3 bi B
| w 32 32-bit |32 J
1 T kN = MixCol [+ S
1 - |
: : m umns :
! 5;)/ 32-bit |
-Hox MixCol |- |
16 -umns I‘
—— |
|

Fig.4: The detailed design of the proposed iterative AES

architecture

The composite field procedure used for calculating
multiplicative inverses is an efficient method which was
proposed by [2] and [13]. From [2], [3], [10] and [11], the
multiplicative inverse circuit in GF(2°%) can be produced as
shown in Fig. 5.All of these blocks have been converted to
polynomial representation by decomposing the representation
of the field elements, such as performing calculations in a
composite field of GF((2*)?) and GF(((2%)?)?) instead of GF(2°)
because all Galois Field representations of the same order (for
example, GF(2%), GF((2*)?) and GF(((2%)??) are isomorphic,
this will lower the complexity of the execution of
multiplicative inversion [12].

-

N

8-bit GF(2°) Input Value
8-bit GF(2*) Output Value

Fig.5:Multiplicative inversion module for the S-Box

Where:

: Isomorphic mapping to Composite Fields

: Squarer in GF(2%)

: Multiplication with constant A in GF (2%)

X : Multiplicative Inversion in GF(2%)

- Multiplicative operation in GF(2%)

: Inverse Isomorphic mapping to GF(28)

2.2 Mixcolumns

In MixColumns operation, the columns of the state are
considered as polynomials over GF(2%) and multiplied by
modulo x*+1 with a fixed polynomial c(x), where c(x) =03x® +
01x* + 01x + 02 [1]. This can be written as a matrix
multiplication as stated in Eq.3. Where (as., 8¢, a1, doc) iSa
four-byte column of the state and the output column of
MixColumns is (b3,c: b2,c: bl,Cv bO,C)

bo,c 02 03 01 01\ /3oc
bl,cl_ 01 02 03 01 |[a1
bye | |01 01 02 03| azc
\bm/ 03 01 01 02/ \as
02 02 00 00\ /Aoc
01 02 03 01\ aic
01 01 02 03 /| azx

03 01 01 02/ \a3c
00 01 01 01\ /Aoc

01 00 01 O1)[A1c
01 01 00 O1 | Az
01 01 01 00/ \a3c

@

®)

Multiplication with the value 00 or 01 involves no processing
at all; multiplication with value 02 is denoted Xtime(x) and
can be implemented efficiently with a dedicated routine that
consists of a shift operation and a conditional XOR operation
as shown in Eq.4 [1]. Multiplication with 03 is implemented
as a multiplication with 02 plus an additional XOR operation
with the operand as shown in Eq.3. Fig. 6 shows the circuit
diagram of Xtime function, which needs 3 XOR gates.

a x 2=(@7x® + agx” + asx® + ayx® + azx* + ax3 +
a;x* + agx)mod m(x)

4
=agx” + agx® + asx® + (a; @ a;)x* +)
(a; ® a;)x® + a1x% + (ag @ ay)x
Fig. 7 illustrates the proposed hardware for 32-bit

MixColumns which can be realized in a small series of
instructions. The only finite field multiplication used in this
algorithm is multiplication with the element 02, denoted
by "Xtime’.

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

Input
|a7|a6|a5|a4|a3|a2|a1|a0|
RN § S

\%__

(57 ba [22 [2 [55 | 52 | 22 [2o |
Output

Fig.6:Circuit diagram of Xtime

N Dt
=) xtime F—
2.0 ::)

I/P]

8
Mix o 3) 5 D+) bo

Colum a3—4 ! 8 %
ns 8 g 32-bit
as SD‘ - /D‘“}bl o/P

8

Mix
b, Colum

ns

Fig.7:Efficient implementation of MixColumns

2.3 Key Expansion Module

The purpose of the key expander is to calculate a round key for
each round based on the original input key. The
implementation of the key schedule unit is done on-the-fly to
lower storage requirements. In such implementations, a new
round key is derived every iteration of the round
transformation from the previous round key. The initial round
key equals the original secret key. Fig. 8 shows the
implementation of the key scheduler datapath. The calculation
of the round keys is based on the SubBytes function and uses
additionally some simple byte-level operations like XOR. In
each round of the key schedule the last 32-bit word is rotated
then the S-Box has to be applied. As a result four modules of
the S-Box are required.

A constant called Roundconstant is also added to the output of
the S-Box circuit with an XOR gate. This result is combined
with the first 32-bit word with an XOR to generate the first 32-
bit word of the new round key. The other three new 32-bit
words are computed from the oldvalues and an XOR operation
with the other inputs according to the algorithm as illustrated
in Fig. 8.

13

LSB 4 MSB
[32 32 32 32
E 4 r e LSB MSB
8 8 8 8
|S Elo)-:lS BoxIS BOxlS Boxl
Round
81" 8
constant ¥
)
fanY L
Law
432 W
P n
(N>
432 f
P
I 32
P
¥ 32
Key
—] 128-bit Key Reg |
) 13 3B
Roulnd Key

Fig.8:Key Expansion implementation circuit.

3 FPGA IMPLEMENTATION OF THE
PROPOSED AES DESIGN ARCHITECTURE

The proposed iterative design of the AES processor shown on
Fig. 4 was used for the implementation on the FPGA. Two
different architectures were optimized for implementations on
the FPGA which are iterative architecture and fully-pipelined
architecture for increasing the speed at the cost of increased
area.

3.1 The Basic Iterative Architecture

In this architecture each round manipulates 128 bits together.
All 10 rounds are identical with the exception of the final
round, which does not include the MixColumns
transformation. The iterative method allows the calculation of
one AES round per clock cycle. This leads to maximum
hardware utilization in a comparison to the unrolled
architecture because the same piece of hardware is used for all
round transformations while the result is iteratively stored in a
register and used as input to the next round. The key
expansion unit generates one round key per clock cycle. Fig. 9
shows the general design of basic iterative AES core based on
FPGA implementation.
The design consists of three main units:

e Controller unit.

e AES round transformation unit.

e Key expansion unit.

The round transformation unit and key expansion unit are
shown in Fig.4 and Fig.8 respectively and described in detail
in the previous section.The total design has 388 pins. It
requires the Plain_text, Key and Cipher_ text which have a 128
bit length. The signals used to control the proper operations of
the core are clk, reset, start and done.

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

Key Expansion

1
! 1
! I
! 1
! I
I unit 1
! I
! I
! Mux -Sel3 I
clk ! :
reset ! Control unit done
FSM — 7
Start]I () 128 Round :
! g Key
I £
Ke l & :
Y 1281 g \
—]I—|—] .
128, z AES Round 1128
F’IainjextI 128 S (datapath) :Cilpherftext
| data :
1
1
]

Fig.9:General Architecture of the proposed design

As the 10Bs requirements of the basic iterative AES
architecture, exceeds the xc3s500e-4fg320 device resources,
which has just 232 10Bs, Plain text and key are multiplexed
into one wire called Key_plain_text and stored in registers to
be processed later on in parallel. So, the final architecture
multiplexes the Plain text and Key 128-bit buses. No
additional clock cycles are required. In a given clock cycle, a
bus is registered, and in the next clock cycle, the other bus.
The output Cipher_text is divided into two 64-bit nipples, the
lower nipple (from bit O to 63) is sent first when the signal
done is activated and the higher nipple (from bit 64 to 127) is
sent in the following clock cycle so, to obtain the 128-bit
Cipher_text output an extra clock cycles is required in the last
round (Round10) where the processor stays for two clock
cycles. Fig. 10 shows the resulting modification in 1/O
diagram of the AES processor.

Key PIaiD teﬁt

128
clk

|

AES-128
Enc
Processor

rst Cipher_text
—

64

|

start

|

Sel_reg

Fig.10: 1/O diagram of AES processor

3.1.1 Controller Unit

A 12-state Finite State Machine, FSM was used to implement
the controller and to keep track of the current round since it is
easy to debug and upgrade. The output control signals of the
FSM are described in Table 1. The state diagram and FSM
initial values are shown in Fig.11. As can be seen, the input
signal start modifies the current state from Idle state to
RoundO (initial round) state in which the key and input-text
(Cipher-text XOR Key) are registered. In this state, the two

14

control signals Mul-Sell and Mul-Sel3 have value of logical
one to control the data flow of both input-text and round-
cipher-text (1 for input-text and 0 for and round-cipher-text),
while the Mul-Sel13 selects the input key or round-key (1 for
input key and 0 for round-key). Also the next ten states
compute the ten roundsleft. Each round key, as well as round
transformation, is completed in one clock cycle. In each of the
following clock cycles, Roundl to Round10 states are active,
in each, different ROUND-Constant value is applied to the
Key Expansion module. The process is completed in Round10
when the done signal is pulsed.Only in this state, done=1
indicates a valid output. The done signal is activated only for
two clock cycle because the output Cipher text is divided into
two nipples. The lower 64-bits nipple is passed then in the
next cycle the higher 64-bit nipple is passed. This division is
done due to the lack of IOB pin of the target FPGA.

Tablel: Control Signals

State Control Signals
Round- Mul-Sell Mul-Sel2 Mul-Sel3 done
Idle - - - - -
Round0(R0) 1 0 1 0
Round1(R1) 00000001 0 0 0 0
Round2(R2) 00000010 0 0 0 0
Round3(R3) 00000100 0 0 0 0
Round4(R4) 00001000 0 0 0 0
Round5(R5) 00010000 0 0 0 0
Round6(R6) 00100000 0 0 0 0
Round7(R7) 01000000 0 0 0 0
Round8(R8) 10000000 0 0 0 0
Round9(R9) 00011011 0 0 0 0
Round10(R10 00110110 0 1 0 1

e;e Ik
Fese, - e

Fig.11: FSM Implementation of the Top controller module of
the AES

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

3.2 The Pipelined Architecture

This architecture is used to increase the throughput at the cost
of increased area by adding more inner and outer pipelining
registers to achieve multiple processing simultaneously. As
shown in Fig. 12, the architecture of the proposed fully
pipelined AES processor is composed of ten AES functional
blocks and key expansion circuits. The inter-pipelined and
outer-pipelined stages are utilized for implementations. In the
inter-pipelined scheme, the register arrays are allocated
among the operational circuits of SubByte, MixColumns and
AddRoundKey. The use of the S-Box as one continuous path
would be costly in terms of logic delay hence reducing the
highest possible achievable clock frequency. The S-Box block
is further divided into five pipelined stages to break the logic
delay in an attempt to achieve a higher clock frequency. Fig.
13 shows the applied pipeline registers in the S-Box where the
dotted line indicates a pipelined register. In addition one
Pipelining register is added to the MixColumns. From Round1
to Round7, 5-stages S-Boxes based combinational logic
implementation are used, while in Round8, Round9 and
Round10, the S-Boxes are mapped into Block RAMs. The
number of inner pipeline registers equal to 7x7(form Roundl
to Round7) plus 2x 3 due to the use of Block RAMs (from
Round8 to Round10).

i/ AES AES AES
ipher_text
8 idd Round Round ‘oo Round {—~>
- ey 1 2 10 128
Plain_text
SubBytes Mix columns L
1 5 b R
IR = 2l o [AI“"KR“"‘T !
——— — — — -umns Y
L7 [

1%

n | 3Pt

2
L1l 1

I

|
N
RGN
|||}r||

. s

§-Box
ANTRN
EE NN

Fig.12: AES fully pipelined architecture

14 4

i

e

8-bit GF(2°) Input Value
8-bit GF(2") Output Value

|
|
I

l A
"
|

|
|
|
|
L |

Fig.13: Multiplicative inversion module for the S-Box

In the outer pipelined scheme, ten pipelining registers are
added between each AES round computation. Thus, the

15

latency delay of the proposed full-pipelined AES processor is
65 clock cycles (55 inner +10 outer. As result of this
architecture, the throughput is 128 bits per clock cycle.

4. PERFORMANCE RESULTS AND COMPARISON

WITH RELATED WORKS

Both the basic iterative architecture shown in Fig.4 and the
fully pipelined architecture shown in Fig. 12 have been coded
by Verilog HDL and implemented on a Xilinx Spartan-3E as a
target device. All the results are synthesized, simulated and
implemented based on the Xilinx ISE 13.4 design tool, the
ISim simulator was used to perform functional and timing
simulations for the Verilog design and the Xilinx XST
synthesis tool was used for performing logic synthesis. For the
basic iterative architecture, two different implementation
techniques of S-Box are used, the first method is based on
combinational logic implementation of S-Box as described
previously and the second method is using 256 x 8 bit Rom
lookup table using the special feature of Xilinx Spatan-3E that
has block RAMs. These are dedicated embedded memory
blocks ideal for implementing S-Box. These block RAMs can
either be used as Single or Dual port RAM. In this work, a
Dual port RAM is configured as two separate Single port
RAMs as shown in Fig.14. Thus two S-Boxes can be
implemented in one block RAM only, therefore utilizing each
Dual port RAM block as two single ports RAM, 20 S-Boxes
are realizable in 10 block RAMSs.

WEA >
ENA >
SSRA >

CLKA 3 DOA

Single Port A S-box 1

DIA 3

DIPA N

L
[1

WEB S

ENB N

SSRB
CLKB N

ADDRB N

DIB N

DIPB S

DOP

Single Port B

DOB S-box 2

Fig.14:0ne Block RAM becomes two independent Single-Port
RAMSs used to implements two S-Boxes

The performance results and FPGA resources required of our
proposed architectures are shown in Table 2. These results are
taken after Placing and Routing report of the design.As can be
seen from Table 2, the resulting utilization hardware by the
AES processor with maximum place-and-route efforts for the
different architecture is varying according to the device used
and techniques used in the design. For instance, the speed
grade of the device defines the maximum toggle frequency of
the CLB. And using of the Block RAM leads to lower
resource in terms of the slices (from 1563 to 347) and lower
critical path time, thus higher clock frequency and maximum
throughput (from 0.7034Gbps to 1.3988Gbps) regarding the
basic iterative architecture. A very high throughput of

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

31.3341Gbps is achieved using the fully pipelined architecture
and a mix of BRAM and combinational logic to implement the
S-Boxes.

Table2. Implementation performance results after place and
route

Architectu S- FPGA Slices Block Max Laten-Throughput
-re Boxtechni Device RAM Clock cy Ghps
que MHz cycles
Basic Combinati Spartan3E 1563 0 71.444 13 0.7034

iterative -onallogic xc3s500e-
Basic Block Spartan3E 347 10 142.066 13 1.3988
iterative RAM xc3s500e-
Fully Pipeline Spartan3E 14710 30 245.761 65 31.4574

pipelined S-Box xc3s1600e
-5

Table 3:1IComparison with other FPGA implementation of
AES basic architecture

Ref # Device BRAM Slices Max Latency Throughput
or clock (clk Gbps
BROM (MHz) cycles)
[15] XC2Vv8000 4 8378 65 10 0.832
Enc/Dec 5
[16] XCV812 36 2744 2241 11 0.259
Enc
[17] XCV300 2358 22 11 0.259
Enc/Dec BG432
[18] XCV1000e 5150 76 21 0.463
Enc/Dec 8
[19] XC2Vv3000 0 7617 75.3 11 0.876
Enc/Dec 6
[20] XC2S200E 6 196 28742 250 0.0164
Enc/Dec
[20] XC2Vv500 6 192 78.59 250 0.0406
Enc/Dec
[21] xc35200pq2 10 481 23197 11 2.699
08
-5
[22] Xilinxxcv1000bg O 3528 25.3 11 0.2942
560-4
[23] XC2V1000- 20 2335 86.94 10 0.92
Enc FG456 distrib
memory
[23] XC2V1000- 10 586 96.42 10 1.45
Enc FG456
[24] Virtex-11 44 2703 196 1.19
Pro LUT
[25] XC2S30 3 222 50 0.139
Enc/Dec 5
[28] Spartan-3 11 148 287 0.632
XC3S20
[31] Virtex4 0 2018 123 400 0.040
1S-Box LUTs
[31] Virtex4 0 2214 130 180 0.0925
2S-Box LUTs
[31] Virtex4 0 2490 145 130 0.142
4S-Box LUTs

16

A comparison of our results has been carried out with other
similar FPGA implementations of the AES. Table 3 reports the
measurements of basic iterative hardware architectures.
Noticing that, different device families and speeds will yield
different performance results in addition to data-path width of
the architecture. Table 4 reports the performance of the
pipelined architecture.

Table 4: Comparison with other FPGA implementation of the
AES pipelined architecture

Ref# Device Block Slices Max.clock Latency Throughput
RAMs Or (MHz) (clkcycles) Gbps
[26] Virtex!1 84 5177 168.3 31 21.54
Enc -Pro
[26] XC2VP20 0 9446 169.1 71 21.64
Enc 7
[27] XCV812e 0 9406 718 8.968
-6
[27] XCV800 0 9406 935 11.685
-8
[27] XCV1000 0 11014 125.3 15.65625
-6
[27] ~ XCV1000e 0 11022 168.4 71 21.56
Enc -8
[28] Spartan- 111 20720 240.9 30.11
[29] Virtex- 1l 31674 222.8 27.86
[19] XC2v3000 O 139357 2222 51 28.4
ENC/Dec 6
[10] Cyclone 18 3039 198.93 40 2.546
Enc/Dec 1 LEs
[14] XC2VP70 200 5408 232.6 60 29.77
Enc -7

5 SIMULATION RESULTS

The simulation results of AES encryption module are shown in
Fig. 15 and Fig. 16. The Plain_text, Key and the expected
output Cipher_text vectors were taken from FIPS publication
[32] and the AES algorithm validation suite [33]. Here are
samples of the data which was applied to the test in the same
order:

1) Firstly:

e Plain_text: 3243f6a8885a308d313198a2e0370734.

e Key: 2b7e151628aed2a6abf7158809cf4f3c.

e Cipher_text: 3925841d02dc09fbdc118597196a0b32.

2) Secondly:

e Plain_text: 00112233445566778899aabbccddeeff.

e Key: 000102030405060708090a0b0c0d0e0f.

e Cipher_text: 69¢c4e0d86a7b0430d8cdb78070b4c55a

3) Thirdly:

e Plain_text: 80000000000000000000000000000000.

e Key: 00000000000000000000000000000000.

e Cipher_text: 3ad78e726clec02b7ebfe92b23d9ec34.

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

Fourthly:

e Plain_text: 00000000000000000000000000000000.
e Key: 10a58869d74he5a374cf867cfh473859.

e Cipher_text: 6d251e6944b051e04eaabfh4dbf78465.
Fifthly:

e Plain_text: fifffrffffrfrrrrrfrfrrrfco.

e Key: 00000000000000000000000000000000.

e Cipher_text: 0833ff6f61d98a57b288e8c3586h85a6

Fig. 15 shows the simulation results of the basic iterative AES
algorithm. As can be seen, the output Cipher_text result of the
encryption was completed in 13 clock cycles and the done
signal goes high every 13 clock cycles.

Fig.15: Simulation result of a basic iterative AES architecture

[13 clock cycles | 13 clock cycles

Fig. 16 shows the simulation results of the pipelined AES
algorithm. It is clear that the output Cipher text result of the
encryption was obtained after 65 clock cycles. The throughput
achieved by this architecture is 128bits per clock cycle. All
results were successfully verified against the expected sample
Cipher text results.

Fig.16: Simulation result of the Pipelined architecture

6 HARDWARE TESTING

For the hardware testing of the AES processor functionality
implemented using Spartan-3E Starter Kit board which houses
the target FPGA (XC3S500E-4), additional test circuitry and
modules were added to the design and integrated to the AES
design in order to perform such tests. Most of the 0B pins are

17

interfaced with components on the board and are not available
to use. Fig. 17 shows the test circuit, a clock source of a
50MHz clock from oscillator is connected to the AES
processor. The same first four vectors of Key and Plain_text
were stored in ROM and are read at every 13 clock cycles of
AES processor latency. This is calculated by the clock divider
module. At each 13-clock cycles different Key and Plain_text
are supplied to the AES Enc module. Thus the output result of
the AES encryption is stored in BRAM to be read and verified
later. Each Cipher_text result was stored in a different location
in RAM according to the address controlled by the FSM
controller module. When writing to the RAM ends, the
reading process takes place. The values written to the RAM
are passed to the LCD module to be displayed on the 2
linex16 character LCD. This is enough to display one result at
a time.

@ 50MHz ar @ W:Sl e
— e ms| &% pf oo ot oo
Clock - :
divide memory
= 128
Daaf Cipher
- a1s | Kev test
i {D_in D_out
s [eome bit ROM AES g |
| Fnc 4128 LD
- o BRAM Interface H
o 28 | processor . 128 module :
4*128 ?L"m :
exi B
bit ROM o :
»lrdd Vi %
P _ter done b :
ey L
— FSM
controller

SHINT) S

Fig.18: The first output Cipher text result when sel=2"b00

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

g

SR

¥

- -
R

o
T

& DHEr Text Wi
S v
1]
| G L

B .

AN AANY

SWAM7) SU2HBSULLIS SW

Fig.21: The third output Cipher text result when sel=211

As can be seen in Fig. 18, Fig. 19, Fig. 20 and Fig. 21, the
results of the hardware testing of the AES encryption
processor were verified and found to be identical to simulation
results.

18

7 CONCLUSION

Two different architectures for AES encryption processor are
proposed, the basic iterative and the fully pipelined methods.
Two implementation techniques for the S-Box, the Block
RAM available in the Spartan-3E FPGA andthe fully
combinational logic are used.Also mixing between the two
techniques in the fully pipelined architecture yields a
maximum throughput of 31.4574Gbps using 30 Block RAMs
and 14720 Slices of Spartan-3E FPGA with an optimum
number of pipeline stages for the S-Box. The encrypted
cipher_text results are analysed and proved to be correct using
simulation and hardware verification and both results are
identical. The encryption efficiency of the proposed AES
algorithm was studied and compared with other similar FPGA
implementations of AES algorithm. We found that, using of
the BRAM leads to lower resource in terms of the slices and
lower critical path time, thus higher clock frequency and max
throughput.

REFERENCES

[1] J. Daernen and V.Rijrnen, "Specification of Rijndael," in
The Design of Rijndael: AES - The Advanced
Encryption Standard, Berlin; New York: Springer-Verlag
Berlin Heidel- berg, 2002, pp. 31-55.
A. Satoh, S. Morioka, K. Takano and S. Munetoh,
"Acompactrijndael hardware architecture with S-box
optimization," Springer-Verlag Berlin Heidelberg, 2001.
E. NC Mui, "Practical implementation of Rijndael S-Box
using combinational Logic," unpublished.
B. Rashidi and B. Rashidi, "Implementation of an
optimized and pipelined combinational Logic Rijndael S-
Box on FPGA," Published in MECS, Computer Network
and Information Security, 2013.
J. Wolkerstorfer, E Oswald, and M Lamberger, "An
ASIC implementation of the AES SBoxes," In Bart
Preneel, editor, Topics in Cryptology - CT-RSA
2002, The Cryptographers Track at the RSA Conf. 2002.
G. KUMAR and P. MAHESH, "Implementation of AES
algorithm using Verilog," International Journal of VLSI
and Embedded Systems-IJVES, Vol 04, Article 05090;
June 2013.
G. Leelavathi, S. Prakasha, K Shaila, K.R. Venugopal and
L.M. Patnaik, "Design and implementation of Advanced
Encryption Algorithm with FPGA and ASIC"
International Journal of Research in Engineering &
Advanced Technology, Volume 1, Issue 3, ISSN: 2320
8791, pp.1-8, June-July, 2013.
Announcing the Advanced Encryption Standard (AES),
Federal Information Processing Standards Publication
197, November 2001.
H. Trang and N. V. Loi, "An efficient FPGA
implementation of the Advanced Encryption Standard
algorithm,"978-1-4673-0309-5, IEEE. 2012.
[10]D. Kenney, "Energy efficiency analysis and
implementation of AES on an FPGA," M.S. thesis, Dept.
Elect. Eng., Univ. of Waterloo, Canada, 2008.

(2]

3]
[4]

(5]

(6]

[7]

(8]

(9]

http://www.mecs-press.org/)%2CComputer

7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies
20-23 February 2016, Friendship Hall, Khartoum, Sudan

[11]N. Ahmad, R. Hasan and W.M Jubadi, "Design of AES S-
Box using combinational logic optimization," in IEEE
Symposium on Industrial Electronics & Applications
(ISIEA), 2010.

[12] X. Zhang and K. Parhi, "High-Speed VLSI architectures
for the AES algorithm,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol.2, No. 9,

September 2004.
[13]A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao
and P Rohatgi, "Efficient rijndael encryption

implementation with composite field arithmetic,” in
CHES ’01: Proceedings of the Third International Work-
shop on Cryptographic Hardware and Embedded
Systems, 2001.

[14]D. Kotturi, S. M. Yoo, and J. Blizzard, "AES crypto chip
utilizing high- speed parallel pipelined architecture,” in
IEEE International Symposium on Circuits and Systems,
vol. 5, pp.4653-4656, May 2005.

[15]R. Sever, A. N. Ismailglu, Y. C. Tekmen, M. Askar, and
B. Okcan, "A high speed FPGA implementation of the
Rijndael algorithm," in Euromicro Symposium on Digital
System Design, pp.358-362, Sep. 2004.

[16]N. A. Saqib, F. R. Henriquez, and A. D. Perez, "AES
algorithm implementation - an efficient approach for
sequential and pipeline architectures,” The Fourth

[23]1. A. Badillo, C. F. Uribe, and R. Cumplido, "Design and
implementation of an FPGA-based 1.452-Gbps non-
pipelined AES architecture,” M. Gavrilova et al. (Eds.):
ICCSA 2006, LNCS 3982, pp. 446 455, 2006. Springer-
Verlag Berlin Heidelberg 2006.

[24]J. Lu and J. Lockwood, "IPSec implementation on Xilinx
Virtex-1l1 Pro FPGA and its application," Reconfigurables
Architectures Workshop (RAW), April 2005.

[25]P. Chodowiec and K. Gaj, "Very compact FPGA
implementation of the AES algorithm,” in Proc. of CHES
, LNCS 2779, pp. 319-333,2003.

[26]A. Hodjat and 1. Verbauwhede, "A 21.54 Ghits/s fully
pipelined AES processor on FPGA," in IEEE Symposium.
on Field-Programmable Custom Computing Machines,
pp. 308-309, Apr. 2004.

[271X. zZhang and K. K. Parhi, "High-Speed VLSI
architectures for the AES algorithm," IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 9, Sep. 2004.

[28] T. Good and M. Benaissa, "Pipelined AES on FPGA with
support for feedback modes (in a multi-channel
environment)," IET Information Security, vol. 1, pp. 1-10,
2007.

[29]G. Singh and R. Mehra, "FPGA based high speed and
area efficient AES encryption for data security,”

19

Mexican International Conference on Computer Science,
pp.126-130, Sep. 2003.

[17]N. Sklavos and O. Koufopavlou, "Architectures and VLSI
implementations of the AES-Proposal Rijndael," IEEE
Transactions on Computers, vol. 51, issue 12, pp.1454-
1459, Dec. 2002.

[18]S. S. Wang and W. S. Ni, "An efficient FPGA
implementation of advanced encryption standard
algorithm,” in International Symposium on Circuits and
Systems, vol. 2, pp.11-597-600, May 2004.

[19]C. P. Fan and J. K. Hwang, "FPGA implementation of
high throughput sequential and fully pipelined AES
algorithm," International journal of electrical engineering,
Vol.15, NO.6 (2008).

[20]A. Moussa and Z. Ismaili, "Self-partial and dynamic
reconfiguration implementation for AES using FPGA,"
IJCSI international journal of computer science issues,
Vol. 2, 20009.

[21]A. Aziz and N. Ikram, "Hardware implementation of
AES- CCM for robust secure wireless network,"
unpublished.

[22] AJ. Elbirt, W. Yip, B. Chetwynd and C. Par, "An FPGA
implementation and performance evaluation of the AES
block cipher candidate algorithm finalists,” Third AES
candidate conference, April 2000.

International Journal of Research and Innovation in
Computer Engineering, vol. 1, no. 2, pp. 53-56, Feb.
2011.

[30]T. Ichikawa et al, "Hardware Evaluation of the AES
Finalists," in Proc.3th AES Candidate Conference, New
York, April 2000.

[31]J. Rejeb, T. Lee and S. Kaginele, "Compact and power
conscious private- key cryptosystem for wireless
devices," in Second International Conference on Wireless
and Mobile Communications, ICWMC 2006.

[32] Announcing the Advanced Encryption Standard (AES),
Federal Information Processing Standards Publication
197, November 2001.

[33]L. E. Bassham IllI, The Advanced Encryption Standard
Algorithm Validation Suite (AESAVS), November 15,
2002.

[34]M. McLoone and J. V. McCanny, "Single-chip FPGA
implementation of the Advanced Encryption Standard
algorithm," FPL 2001, LNCS 2147, pp. 152-161, 2001.

[35] G. P. Saggese, A. Mazzeo, N. Mazzocca and A. G. M
Strollo, "An FPGA-Based Performance Analysis of the
Unrolling, Tiling, and Pipelining of the AES Algorithm,"
FPL 2003, LNCS 2778, pp. 292-302, 2003.

