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Abstract: This paper presents an FPGA based hardware design and implementation of a 128 bit AES encryption
processor. Synthesis is achieved using Verilog code implemented on the FPGA. Two different architectures are
presented, the basic iterative architecture which achieves low FPGA resources requirements, 347 slices and 10
BRAM and a maximum throughput is 1.3988Gbps. And the fully pipelined architecture of AES encryption
processor for higher speed applications. The second architecture achieved 31.4574 Gbps as maximum throughput
and using 30 Block RAM. These designs utilize the low cost and low power Spartan3E™ FPGA. Hardware
verification has been performed on the Spartan-3E starter board (xc3s500e-4) and the results were similar to

simulation results.
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1. INTRODUCTION

The Advanced Encryption Standard also known as Rijndael is
the standard symmetric key block cipher known for its robust
security properties and simple implementation in both
hardware and software [1]. It is capable of supporting block
length of 128 bits and key lengths of 128, 192 and 256 bits [8].
The actual key size depends on the desired security level. The
different versions are most often denoted as AES-128, AES-
192, and AES-256. AES algorithm encrypts 128-bit blocks of
plain text by repeatedly applying the same round
transformation, as outlined in Fig. 1 [1] [9] [10]. AES-128
applies the round transformation 10 times, AES-192 uses 12,
and AES-256 uses 14 iterations [7].

The AES algorithm can be efficiently implemented in
hardware or software. Software implementations are very
resourceful, but they offer a limited physical security and
slower processing. In addition to the growing requirements for
high speed, high volume secure communications combined
with physical security, hardware implementation of
cryptography takes place. The AES algorithm hardware
implementation is faster and more secure than software
implementation. There have been various hardware
implementations of AES for ASIC e.g. [2], [5], [7] and [30]
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and FPGA, e.g. [22], [23], [26], [34] and [35]. FPGA
implementation is an intermediate solution between general
purpose processors (GPPs) implementation and application
specific integrated circuits (ASICs) implementation.This has
the benefits of being customizable, and the cost of an FPGA
can be less than the more powerful CPU.

Using an FPGA should result in a fair gain in performance.
The design and implementation of AES encryption processor
on the low cost and low power Spartan-3E FPGA is presented
in this paper. Two architectures are presented; the first feature
is the relatively low speed (1.39Gbps) and low FPGA
resources (347 slices and 10 Block RAM) which makes it
suitable for most low-end embedded applications.

The second feature is the high throughput (31.4574Gbps) in
which a fast and area efficient composite field implementation
of the byte substitution phase is designed using an optimum
number of pipeline stages. Hardware verification has been
done on the Spartan-3E starter board and the results were
similar to simulation results.
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Fig.1: AES Process Block Diagram

1.1 Description OfAes Algorithm

The main functions and a block diagram of the algorithm are
shown in Fig. 3. The function SubBytes performs a non-linear
transformation on each byte of the input stateindependently
[1]. It substitutes all bytes of the State using a look-up table
called S-Box as can be seen in Fig. 2.
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Fig.2:SubBytes function operates on state [1]

The ShiftRows step is a straightforward byte transposition. It
rotates the rows of the state to the left by an offset. The offset
equals the row index, the first row is not rotated at all; the
second, third and fourth rows are rotated to the left by one,
two and three bytes respectively as shown in Fig. 3.

The MixColumns transformation operates on the columns of
the state in which the four elements of each column are treated
as a four-term polynomial. The four elements of each column
are multiplied by a constant polynomial and reducing to x*+4.
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Fig.3:ShiftRows operates on the rows of the state [1]

The mapping between input and output of MixColumns is
defined by the matrix multiplication given in Eq. 1.
bo, 2 3 1 1\ /%
bie|_[1 2 3 1][@ 1)
by, 1 1 2 3|z
\bu / 3 1 1 2/ \asc

The key addition is the final cipher function denoted
AddRoundKey. In which, the current state is modified by
combining it with current round key using bit-wise XOR
operation.

2. HARDWARE DESIGN

The datapath block diagram of the proposed architecture
design is shown in Fig. 4. A 128-bit architecture is used to
offer the greatest degree of parallelism to increase
concurrency of AES computations that leads to a higher
throughput. The whole AES hardware blocks are composed of
five operational modules, which are the SubBytes, the
ShiftRows, the Mix- Columns, the AddRoundKey and the Key
expansion circuits. In the following sections, the design of
high performance architectures for the Sub-Bytes, the
MixColumns and the Key expansion operational modules are
described.

2.1 Subbytes

S-Box based on Galois Field GF(2®) is directly constructed by
performing two transformations; first taking a multiplicative
inverse in the Galois Field GF(2%) and then applying the
standard affine transformation over Galois Field GF (2°) [6].
The polynomial representation in GF(2°%) is

b(x)= b’ x" +b° x° +b° x° +b* x* +b® x* +b% x* +x+ 1.

1) Affine Transformation:
The affine transformation f can be described as a polynomial
multiplication, followed by the XOR with a constant as
outlined in Eq.2 [4].
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Fig.4: The detailed design of the proposed iterative AES

architecture

The composite field procedure used for calculating
multiplicative inverses is an efficient method which was
proposed by [2] and [13]. From [2], [3], [10] and [11], the
multiplicative inverse circuit in GF(2°%) can be produced as
shown in Fig. 5.All of these blocks have been converted to
polynomial representation by decomposing the representation
of the field elements, such as performing calculations in a
composite field of GF((2*)?) and GF(((2%)?)?) instead of GF(2°)
because all Galois Field representations of the same order (for
example, GF(2%), GF((2*)?) and GF(((2%)??) are isomorphic,
this will lower the complexity of the execution of
multiplicative inversion [12].

-

N

8-bit GF(2°) Input Value
8-bit GF(2*) Output Value

Fig.5:Multiplicative inversion module for the S-Box

Where:

: Isomorphic mapping to Composite Fields

: Squarer in GF(2%)

: Multiplication with constant A in GF (2%)

X : Multiplicative Inversion in GF(2%)

- Multiplicative operation in GF(2%)

: Inverse Isomorphic mapping to GF(28)

2.2 Mixcolumns

In MixColumns operation, the columns of the state are
considered as polynomials over GF(2%) and multiplied by
modulo x*+1 with a fixed polynomial c(x), where c(x) =03x® +
01x* + 01x + 02 [1]. This can be written as a matrix
multiplication as stated in Eq.3. Where (as., 8¢, a1, doc) iSa
four-byte column of the state and the output column of
MixColumns is (b3,c: b2,c: bl,Cv bO,C )

bo,c 02 03 01 01\ /3oc
bl,cl_ 01 02 03 01 |[ a1
bye | |01 01 02 03| azc
\bm/ 03 01 01 02/ \as
02 02 00 00\ /Aoc
01 02 03 01\ aic
01 01 02 03 /| azx

03 01 01 02/ \a3c
00 01 01 01\ /Aoc

01 00 01 O1)[ A1c
01 01 00 O1 | Az
01 01 01 00/ \a3c

@

®)

Multiplication with the value 00 or 01 involves no processing
at all; multiplication with value 02 is denoted Xtime(x) and
can be implemented efficiently with a dedicated routine that
consists of a shift operation and a conditional XOR operation
as shown in Eq.4 [1]. Multiplication with 03 is implemented
as a multiplication with 02 plus an additional XOR operation
with the operand as shown in Eq.3. Fig. 6 shows the circuit
diagram of Xtime function, which needs 3 XOR gates.

a x 2=(@7x® + agx” + asx® + ayx® + azx* + ax3 +
a;x* + agx)mod m(x)

4
=agx” + agx® + asx® + (a; @ a;)x* + )
(a; ® a;)x® + a1x% + (ag @ ay)x
Fig. 7 illustrates the proposed hardware for 32-bit

MixColumns which can be realized in a small series of
instructions. The only finite field multiplication used in this
algorithm is multiplication with the element 02, denoted
by "Xtime’.
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Fig.6:Circuit diagram of Xtime
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Fig.7:Efficient implementation of MixColumns

2.3 Key Expansion Module

The purpose of the key expander is to calculate a round key for
each round based on the original input key. The
implementation of the key schedule unit is done on-the-fly to
lower storage requirements. In such implementations, a new
round key is derived every iteration of the round
transformation from the previous round key. The initial round
key equals the original secret key. Fig. 8 shows the
implementation of the key scheduler datapath. The calculation
of the round keys is based on the SubBytes function and uses
additionally some simple byte-level operations like XOR. In
each round of the key schedule the last 32-bit word is rotated
then the S-Box has to be applied. As a result four modules of
the S-Box are required.

A constant called Roundconstant is also added to the output of
the S-Box circuit with an XOR gate. This result is combined
with the first 32-bit word with an XOR to generate the first 32-
bit word of the new round key. The other three new 32-bit
words are computed from the oldvalues and an XOR operation
with the other inputs according to the algorithm as illustrated
in Fig. 8.
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Fig.8:Key Expansion implementation circuit.

3 FPGA IMPLEMENTATION OF THE
PROPOSED AES DESIGN ARCHITECTURE

The proposed iterative design of the AES processor shown on
Fig. 4 was used for the implementation on the FPGA. Two
different architectures were optimized for implementations on
the FPGA which are iterative architecture and fully-pipelined
architecture for increasing the speed at the cost of increased
area.

3.1 The Basic Iterative Architecture

In this architecture each round manipulates 128 bits together.
All 10 rounds are identical with the exception of the final
round, which does not include the MixColumns
transformation. The iterative method allows the calculation of
one AES round per clock cycle. This leads to maximum
hardware utilization in a comparison to the unrolled
architecture because the same piece of hardware is used for all
round transformations while the result is iteratively stored in a
register and used as input to the next round. The key
expansion unit generates one round key per clock cycle. Fig. 9
shows the general design of basic iterative AES core based on
FPGA implementation.
The design consists of three main units:

e Controller unit.

e AES round transformation unit.

e Key expansion unit.

The round transformation unit and key expansion unit are
shown in Fig.4 and Fig.8 respectively and described in detail
in the previous section.The total design has 388 pins. It
requires the Plain_text, Key and Cipher_ text which have a 128
bit length. The signals used to control the proper operations of
the core are clk, reset, start and done.
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Fig.9:General Architecture of the proposed design

As the 10Bs requirements of the basic iterative AES
architecture, exceeds the xc3s500e-4fg320 device resources,
which has just 232 10Bs, Plain text and key are multiplexed
into one wire called Key_plain_text and stored in registers to
be processed later on in parallel. So, the final architecture
multiplexes the Plain text and Key 128-bit buses. No
additional clock cycles are required. In a given clock cycle, a
bus is registered, and in the next clock cycle, the other bus.
The output Cipher_text is divided into two 64-bit nipples, the
lower nipple (from bit O to 63) is sent first when the signal
done is activated and the higher nipple (from bit 64 to 127) is
sent in the following clock cycle so, to obtain the 128-bit
Cipher_text output an extra clock cycles is required in the last
round (Round10) where the processor stays for two clock
cycles. Fig. 10 shows the resulting modification in 1/O
diagram of the AES processor.
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Fig.10: 1/O diagram of AES processor

3.1.1 Controller Unit

A 12-state Finite State Machine, FSM was used to implement
the controller and to keep track of the current round since it is
easy to debug and upgrade. The output control signals of the
FSM are described in Table 1. The state diagram and FSM
initial values are shown in Fig.11. As can be seen, the input
signal start modifies the current state from Idle state to
RoundO (initial round) state in which the key and input-text
(Cipher-text XOR Key) are registered. In this state, the two
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control signals Mul-Sell and Mul-Sel3 have value of logical
one to control the data flow of both input-text and round-
cipher-text (1 for input-text and 0 for and round-cipher-text),
while the Mul-Sel13 selects the input key or round-key (1 for
input key and 0 for round-key). Also the next ten states
compute the ten roundsleft. Each round key, as well as round
transformation, is completed in one clock cycle. In each of the
following clock cycles, Roundl to Round10 states are active,
in each, different ROUND-Constant value is applied to the
Key Expansion module. The process is completed in Round10
when the done signal is pulsed.Only in this state, done=1
indicates a valid output. The done signal is activated only for
two clock cycle because the output Cipher text is divided into
two nipples. The lower 64-bits nipple is passed then in the
next cycle the higher 64-bit nipple is passed. This division is
done due to the lack of IOB pin of the target FPGA.

Tablel: Control Signals

State Control Signals
Round- Mul-Sell Mul-Sel2 Mul-Sel3 done
Idle - - - - -
Round0(R0) 1 0 1 0
Round1(R1) 00000001 0 0 0 0
Round2(R2) 00000010 0 0 0 0
Round3(R3) 00000100 0 0 0 0
Round4(R4) 00001000 0 0 0 0
Round5(R5) 00010000 0 0 0 0
Round6(R6) 00100000 0 0 0 0
Round7(R7) 01000000 0 0 0 0
Round8(R8) 10000000 0 0 0 0
Round9(R9) 00011011 0 0 0 0
Round10(R10 00110110 0 1 0 1

e;e Ik
Fese, - e

Fig.11: FSM Implementation of the Top controller module of
the AES
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3.2 The Pipelined Architecture

This architecture is used to increase the throughput at the cost
of increased area by adding more inner and outer pipelining
registers to achieve multiple processing simultaneously. As
shown in Fig. 12, the architecture of the proposed fully
pipelined AES processor is composed of ten AES functional
blocks and key expansion circuits. The inter-pipelined and
outer-pipelined stages are utilized for implementations. In the
inter-pipelined  scheme, the register arrays are allocated
among the operational circuits of SubByte, MixColumns and
AddRoundKey. The use of the S-Box as one continuous path
would be costly in terms of logic delay hence reducing the
highest possible achievable clock frequency. The S-Box block
is further divided into five pipelined stages to break the logic
delay in an attempt to achieve a higher clock frequency. Fig.
13 shows the applied pipeline registers in the S-Box where the
dotted line indicates a pipelined register. In addition one
Pipelining register is added to the MixColumns. From Round1
to Round7, 5-stages S-Boxes based combinational logic
implementation are used, while in Round8, Round9 and
Round10, the S-Boxes are mapped into Block RAMs. The
number of inner pipeline registers equal to 7x7(form Roundl
to Round7) plus 2x 3 due to the use of Block RAMs (from
Round8 to Round10).
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Fig.12: AES fully pipelined architecture
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Fig.13: Multiplicative inversion module for the S-Box

In the outer pipelined scheme, ten pipelining registers are
added between each AES round computation. Thus, the
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latency delay of the proposed full-pipelined AES processor is
65 clock cycles (55 inner +10 outer. As result of this
architecture, the throughput is 128 bits per clock cycle.

4. PERFORMANCE RESULTS AND COMPARISON

WITH RELATED WORKS

Both the basic iterative architecture shown in Fig.4 and the
fully pipelined architecture shown in Fig. 12 have been coded
by Verilog HDL and implemented on a Xilinx Spartan-3E as a
target device. All the results are synthesized, simulated and
implemented based on the Xilinx ISE 13.4 design tool, the
ISim simulator was used to perform functional and timing
simulations for the Verilog design and the Xilinx XST
synthesis tool was used for performing logic synthesis. For the
basic iterative architecture, two different implementation
techniques of S-Box are used, the first method is based on
combinational logic implementation of S-Box as described
previously and the second method is using 256 x 8 bit Rom
lookup table using the special feature of Xilinx Spatan-3E that
has block RAMs. These are dedicated embedded memory
blocks ideal for implementing S-Box. These block RAMs can
either be used as Single or Dual port RAM. In this work, a
Dual port RAM is configured as two separate Single port
RAMs as shown in Fig.14. Thus two S-Boxes can be
implemented in one block RAM only, therefore utilizing each
Dual port RAM block as two single ports RAM, 20 S-Boxes
are realizable in 10 block RAMSs.

WEA >
ENA >
SSRA >

CLKA 3 DOA

Single Port A S-box 1

DIA 3

DIPA N

L
[1

WEB S

ENB N

SSRB
CLKB N

ADDRB N

DIB N

DIPB S

DOP

Single Port B

DOB S-box 2

Fig.14:0ne Block RAM becomes two independent Single-Port
RAMSs used to implements two S-Boxes

The performance results and FPGA resources required of our
proposed architectures are shown in Table 2. These results are
taken after Placing and Routing report of the design.As can be
seen from Table 2, the resulting utilization hardware by the
AES processor with maximum place-and-route efforts for the
different architecture is varying according to the device used
and techniques used in the design. For instance, the speed
grade of the device defines the maximum toggle frequency of
the CLB. And using of the Block RAM leads to lower
resource in terms of the slices (from 1563 to 347) and lower
critical path time, thus higher clock frequency and maximum
throughput (from 0.7034Gbps to 1.3988Gbps) regarding the
basic iterative architecture. A very high throughput of
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31.3341Gbps is achieved using the fully pipelined architecture
and a mix of BRAM and combinational logic to implement the
S-Boxes.

Table2. Implementation performance results after place and
route

Architectu  S- FPGA  Slices Block Max Laten-Throughput
-re Boxtechni Device RAM Clock cy Ghps
que MHz  cycles
Basic Combinati Spartan3E 1563 0 71.444 13 0.7034

iterative -onallogic xc3s500e-
Basic  Block Spartan3E 347 10 142.066 13  1.3988
iterative  RAM  xc3s500e-
Fully  Pipeline Spartan3E 14710 30 245.761 65 31.4574

pipelined S-Box xc3s1600e
-5

Table 3:1IComparison with other FPGA implementation of
AES basic architecture

Ref # Device BRAM  Slices Max Latency Throughput
or clock (clk Gbps
BROM (MHz) cycles)
[15]  XC2Vv8000 4 8378 65 10 0.832
Enc/Dec 5
[16] XCV812 36 2744 2241 11 0.259
Enc
[17] XCV300 2358 22 11 0.259
Enc/Dec BG432
[18]  XCV1000e 5150 76 21 0.463
Enc/Dec 8
[19] XC2Vv3000 0 7617 75.3 11 0.876
Enc/Dec 6
[20] XC2S200E 6 196 28742 250 0.0164
Enc/Dec
[20]  XC2Vv500 6 192 78.59 250 0.0406
Enc/Dec
[21]  xc35200pq2 10 481 23197 11 2.699
08
-5
[22] Xilinxxcv1000bg O 3528 25.3 11 0.2942
560-4
[23] XC2V1000- 20 2335 86.94 10 0.92
Enc FG456 distrib
memory
[23] XC2V1000- 10 586 96.42 10 1.45
Enc FG456
[24] Virtex-11 44 2703 196 1.19
Pro LUT
[25] XC2S30 3 222 50 0.139
Enc/Dec 5
[28] Spartan-3 11 148 287 0.632
XC3S20
[31] Virtex4 0 2018 123 400 0.040
1S-Box LUTs
[31] Virtex4 0 2214 130 180 0.0925
2S-Box LUTs
[31] Virtex4 0 2490 145 130 0.142
4S-Box LUTs
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A comparison of our results has been carried out with other
similar FPGA implementations of the AES. Table 3 reports the
measurements of basic iterative hardware architectures.
Noticing that, different device families and speeds will yield
different performance results in addition to data-path width of
the architecture. Table 4 reports the performance of the
pipelined architecture.

Table 4: Comparison with other FPGA implementation of the
AES pipelined architecture

Ref# Device  Block  Slices Max.clock Latency Throughput
RAMs Or (MHz) (clkcycles) Gbps
[26] Virtex!1 84 5177 168.3 31 21.54
Enc -Pro
[26] XC2VP20 0 9446 169.1 71 21.64
Enc 7
[27] XCV812e 0 9406 718 8.968
-6
[27] XCV800 0 9406 935 11.685
-8
[27] XCV1000 0 11014 125.3 15.65625
-6
[27] ~ XCV1000e 0 11022 168.4 71 21.56
Enc -8
[28] Spartan- 111 20720 240.9 30.11
[29] Virtex- 1l 31674 222.8 27.86
[19] XC2v3000 O 139357 2222 51 28.4
ENC/Dec 6
[10] Cyclone 18 3039 198.93 40 2.546
Enc/Dec 1 LEs
[14] XC2VP70 200 5408 232.6 60 29.77
Enc -7

5 SIMULATION RESULTS

The simulation results of AES encryption module are shown in
Fig. 15 and Fig. 16. The Plain_text, Key and the expected
output Cipher_text vectors were taken from FIPS publication
[32] and the AES algorithm validation suite [33]. Here are
samples of the data which was applied to the test in the same
order:

1) Firstly:

e Plain_text: 3243f6a8885a308d313198a2e0370734.

e Key: 2b7e151628aed2a6abf7158809cf4f3c.

e Cipher_text: 3925841d02dc09fbdc118597196a0b32.

2) Secondly:

e Plain_text: 00112233445566778899aabbccddeeff.

e Key: 000102030405060708090a0b0c0d0e0f.

e Cipher_text: 69¢c4e0d86a7b0430d8cdb78070b4c55a

3) Thirdly:

e Plain_text: 80000000000000000000000000000000.

e  Key: 00000000000000000000000000000000.

e Cipher_text: 3ad78e726clec02b7ebfe92b23d9ec34.
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Fourthly:

e Plain_text: 00000000000000000000000000000000.
e Key: 10a58869d74he5a374cf867cfh473859.

e Cipher_text: 6d251e6944b051e04eaabfh4dbf78465.
Fifthly:

e  Plain_text: fifffrffffrfrrrrrfrfrrrfco.

e Key: 00000000000000000000000000000000.

e Cipher_text: 0833ff6f61d98a57b288e8c3586h85a6

Fig. 15 shows the simulation results of the basic iterative AES
algorithm. As can be seen, the output Cipher_text result of the
encryption was completed in 13 clock cycles and the done
signal goes high every 13 clock cycles.

Fig.15: Simulation result of a basic iterative AES architecture

[ 13 clock cycles | 13 clock cycles

Fig. 16 shows the simulation results of the pipelined AES
algorithm. It is clear that the output Cipher text result of the
encryption was obtained after 65 clock cycles. The throughput
achieved by this architecture is 128bits per clock cycle. All
results were successfully verified against the expected sample
Cipher text results.

Fig.16: Simulation result of the Pipelined architecture

6 HARDWARE TESTING

For the hardware testing of the AES processor functionality
implemented using Spartan-3E Starter Kit board which houses
the target FPGA (XC3S500E-4), additional test circuitry and
modules were added to the design and integrated to the AES
design in order to perform such tests. Most of the 0B pins are
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interfaced with components on the board and are not available
to use. Fig. 17 shows the test circuit, a clock source of a
50MHz clock from oscillator is connected to the AES
processor. The same first four vectors of Key and Plain_text
were stored in ROM and are read at every 13 clock cycles of
AES processor latency. This is calculated by the clock divider
module. At each 13-clock cycles different Key and Plain_text
are supplied to the AES Enc module. Thus the output result of
the AES encryption is stored in BRAM to be read and verified
later. Each Cipher_text result was stored in a different location
in RAM according to the address controlled by the FSM
controller module. When writing to the RAM ends, the
reading process takes place. The values written to the RAM
are passed to the LCD module to be displayed on the 2
linex16 character LCD. This is enough to display one result at
a time.
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Fig.18: The first output Cipher text result when sel=2"b00
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Fig.21: The third output Cipher text result when sel=211

As can be seen in Fig. 18, Fig. 19, Fig. 20 and Fig. 21, the
results of the hardware testing of the AES encryption
processor were verified and found to be identical to simulation
results.
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7 CONCLUSION

Two different architectures for AES encryption processor are
proposed, the basic iterative and the fully pipelined methods.
Two implementation techniques for the S-Box, the Block
RAM available in the Spartan-3E FPGA andthe fully
combinational logic are used.Also mixing between the two
techniques in the fully pipelined architecture yields a
maximum throughput of 31.4574Gbps using 30 Block RAMs
and 14720 Slices of Spartan-3E FPGA with an optimum
number of pipeline stages for the S-Box. The encrypted
cipher_text results are analysed and proved to be correct using
simulation and hardware verification and both results are
identical. The encryption efficiency of the proposed AES
algorithm was studied and compared with other similar FPGA
implementations of AES algorithm. We found that, using of
the BRAM leads to lower resource in terms of the slices and
lower critical path time, thus higher clock frequency and max
throughput.
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