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Abstract:This paper presents an FPGA based hardware design and implementation of a 128 bit AES encryption 

processor. Synthesis is achieved using Verilog code implemented on the FPGA. Two different architectures are 

presented, the basic iterative architecture which achieves low FPGA resources requirements, 347 slices and 10 

BRAM and a maximum throughput is 1.3988Gbps. And the fully pipelined architecture of AES encryption 

processor for higher speed applications. The second architecture achieved 31.4574 Gbps as maximum throughput 

and using 30 Block RAM. These designs utilize the low cost and low power Spartan3E
(TM)

 FPGA. Hardware 

verification has been performed on the Spartan-3E starter board (xc3s500e-4) and the results were similar to 

simulation results. 
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1. INTRODUCTION 

The Advanced Encryption Standard also known as Rijndael is 

the standard symmetric key block cipher known for its robust 

security properties and simple implementation in both 

hardware and software [1]. It is capable of supporting block 

length of 128 bits and key lengths of 128, 192 and 256 bits [8]. 

The actual key size depends on the desired security level. The 

different versions are most often denoted as AES-128, AES-

192, and AES-256. AES algorithm encrypts 128-bit blocks of 

plain text by repeatedly applying the same round 

transformation, as outlined in Fig. 1 [1] [9] [10]. AES-128 

applies the round transformation 10 times, AES-192 uses 12, 

and AES-256 uses 14 iterations [7]. 

The AES algorithm can be efficiently implemented in 

hardware or software. Software implementations are very 

resourceful, but they offer a limited physical security and 

slower processing. In addition to the growing requirements for 

high speed, high volume secure communications combined 

with physical security, hardware implementation of 

cryptography takes place. The AES algorithm hardware 

implementation is faster and more secure than software 

implementation. There have been various hardware 

implementations of AES for ASIC e.g. [2], [5], [7] and [30]  

 

and FPGA, e.g. [22], [23], [26], [34] and [35]. FPGA 

implementation is an intermediate solution between general 

purpose processors (GPPs) implementation and application 

specific integrated circuits (ASICs) implementation.This has 

the benefits of being customizable, and the cost of an FPGA 

can be less than the more powerful CPU.  

Using an FPGA should result in a fair gain in performance. 

The design and implementation of AES encryption processor 

on the low cost and low power Spartan-3E FPGA is presented 

in this paper. Two architectures are presented; the first feature 

is the relatively low speed (1.39Gbps) and low FPGA 

resources (347 slices and 10 Block RAM) which makes it 

suitable for most low-end embedded applications.  

The second feature is the high throughput (31.4574Gbps) in 

which a fast and area efficient composite field implementation 

of the byte substitution phase is designed using an optimum 

number of pipeline stages. Hardware verification has been 

done on the Spartan-3E starter board and the results were 

similar to simulation results. 

 

http://www.ejournals.uofk.edu/
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Fig.1:AES Process Block Diagram 

1.1 Description OfAes Algorithm 

The main functions and a block diagram of the algorithm are 

shown in Fig. 3. The function SubBytes performs a non-linear 

transformation on each byte of the input stateindependently 

[1]. It substitutes all bytes of the State using a look-up table 

called S-Box as can be seen in Fig. 2.  

 

Fig.2:SubBytes function operates on state [1] 

The ShiftRows step is a straightforward byte transposition. It 

rotates the rows of the state to the left by an offset. The offset 

equals the row index, the first row is not rotated at all; the 

second, third and fourth rows are rotated to the left by one, 

two and three bytes respectively as shown in Fig. 3. 

The MixColumns transformation operates on the columns of 

the state in which the four elements of each column are treated 

as a four-term polynomial.  The four elements of each column 

are multiplied by a constant polynomial and reducing to x
4
+4. 

 

Fig.3:ShiftRows operates on the rows of the state [1] 

The mapping between input and output of MixColumns is 

defined by the matrix multiplication given in Eq. 1. 

 

 
 

𝒃𝟎,𝒄

𝒃𝟏,𝒄

𝒃𝟐,𝒄

𝒃𝟑,𝒄 

 
 

=  

𝟐 𝟑 𝟏 𝟏
𝟏 𝟐 𝟑 𝟏
𝟏 𝟏 𝟐 𝟑
𝟑 𝟏 𝟏 𝟐

  

𝒂𝟎,𝒄

𝒂𝟏,𝒄

𝒂𝟐,𝒄

𝒂𝟑,𝒄

   (1) 

The key addition is the final cipher function denoted 

AddRoundKey. In which, the current state is modified by 

combining it with current round key using bit-wise XOR 

operation. 

2. HARDWARE DESIGN 

The datapath block diagram of the proposed architecture 

design is shown in Fig. 4. A 128-bit architecture is used to 

offer the greatest degree of parallelism to increase 

concurrency of AES computations that leads to a higher 

throughput. The whole AES hardware blocks are composed of 

five operational modules, which are the SubBytes, the 

ShiftRows, the Mix- Columns, the AddRoundKey and the Key 

expansion circuits. In the following sections, the design of 

high performance architectures for the Sub-Bytes, the 

MixColumns and the Key expansion operational modules are 

described. 

2.1 Subbytes 

S-Box based on Galois Field GF(2
8
) is directly constructed by 

performing two transformations; first taking a multiplicative 

inverse in the Galois Field GF(2
8
) and then applying the 

standard affine transformation over Galois Field GF (2
8
) [6]. 

The polynomial representation in GF(2
8
) is  

 

b(x)= b
7
 x

7
 +b

6
 x

6
 +b

5
 x

5
 +b

4
 x

4
 +b

3
 x

3
 +b

2
 x

2
 +x+ 1 . 

 

1) Affine Transformation:  

The affine transformation f can be described as a polynomial 

multiplication, followed by the XOR with a constant as 

outlined in Eq.2 [4]. 
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    (2) 

2) Multiplicative Inversion in GF(2
8
 ): 

 

 

Fig.4: The detailed design of the proposed iterative AES 

architecture 

The composite field procedure used for calculating 

multiplicative inverses is an efficient method which was 

proposed by [2] and [13]. From [2], [3], [10] and [11], the 

multiplicative inverse circuit in GF(2
8
) can be produced as 

shown in Fig. 5.All of these blocks have been converted to 

polynomial representation by decomposing the representation 

of the field elements, such as performing calculations in a 

composite field of GF((2
4
)

2
) and GF(((2

2
)

2
)

2
) instead of GF(2

8
) 

because all Galois Field representations of the same order (for 

example, GF(2
8
), GF((2

4
)

2
) and GF(((2

2
)

2
)

2
) are isomorphic, 

this will lower the complexity of the execution of 

multiplicative inversion [12]. 

 
Fig.5:Multiplicative inversion module for the S-Box 

Where: 

 

2.2 Mixcolumns 

In MixColumns operation, the columns of the state are 

considered  as polynomials over GF(2
8
) and multiplied by 

modulo x
4
+1 with a fixed polynomial c(x), where c(x) =03x

3
 + 

01x
2
 + 01x + 02 [1]. This can be written as a matrix 

multiplication as stated in Eq.3. Where (a3,c , a2,c , a1,c , a0,c) is a  

four-byte column of the state and the output column of 

MixColumns is (b3,c , b2,c , b1,c , b0,c ). 

 

 
 

𝐛𝟎,𝐜

𝐛𝟏,𝐜

𝐛𝟐,𝐜

𝐛𝟑,𝐜 

 
 

=  

𝟎𝟐 𝟎𝟑 𝟎𝟏 𝟎𝟏
𝟎𝟏 𝟎𝟐 𝟎𝟑 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟐 𝟎𝟑
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𝐚𝟐,𝐜

𝐚𝟑,𝐜

 =

                  

𝟎𝟐 𝟎𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟏 𝟎𝟐 𝟎𝟑 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟐 𝟎𝟑
𝟎𝟑 𝟎𝟏 𝟎𝟏 𝟎𝟐

  

𝐚𝟎,𝐜

𝐚𝟏,𝐜

𝐚𝟐,𝐜

𝐚𝟑,𝐜

  ⊕

                                      

𝟎𝟎 𝟎𝟏 𝟎𝟏 𝟎𝟏
𝟎𝟏 𝟎𝟎 𝟎𝟏 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟎 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟏 𝟎𝟎

  

𝐚𝟎,𝐜

𝐚𝟏,𝐜

𝐚𝟐,𝐜

𝐚𝟑,𝐜

   (3) 

Multiplication with the value 00 or 01 involves no processing 

at all; multiplication with value 02 is denoted Xtime(x) and 

can be implemented efficiently with a dedicated routine that 

consists of a shift operation and a conditional XOR operation 

as shown in Eq.4 [1]. Multiplication with 03 is implemented 

as a multiplication with 02 plus an additional XOR operation 

with the operand as shown in Eq.3. Fig. 6 shows the circuit 

diagram of Xtime function, which needs 3 XOR gates. 

 

𝒂 × 𝟐=

=

(𝒂𝟕𝒙
𝟖 + 𝒂𝟔𝒙

𝟕 + 𝒂𝟓𝒙
𝟔 + 𝒂𝟒𝒙

𝟓 + 𝒂𝟑𝒙
𝟒 + 𝒂𝟐𝒙

𝟑 +

𝒂𝟏𝒙
𝟐 + 𝒂𝟎𝒙)𝒎𝒐𝒅 𝒎 𝒙 

𝒂𝟔𝒙
𝟕 + 𝒂𝟓𝒙

𝟔 + 𝒂𝟒𝒙
𝟓 + (𝒂𝟑 ⊕ 𝒂𝟕)𝒙𝟒 +

(𝒂𝟐 ⊕ 𝒂𝟕)𝒙𝟑 + 𝒂𝟏𝒙
𝟐 + (𝒂𝟎 ⊕ 𝒂𝟕)𝒙

(4) 

Fig. 7 illustrates the proposed hardware for 32-bit 

MixColumns which can be realized in a small series of 

instructions. The only finite field multiplication used in this 

algorithm is multiplication with the element 02, denoted 

by ’Xtime’. 

 



7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies  

20-23 February 2016, Friendship Hall, Khartoum, Sudan 

 

13 

 

 

Fig.6:Circuit diagram of Xtime 

 

Fig.7:Efficient implementation of MixColumns 

2.3 Key Expansion Module 

The purpose of the key expander is to calculate a round key for 

each round based on the original input key. The 

implementation of the key schedule unit is done on-the-fly to 

lower storage requirements. In such implementations, a new 

round key is derived every iteration of the round 

transformation from the previous round key. The initial round 

key equals the original secret key. Fig. 8 shows the 

implementation of the key scheduler datapath. The calculation 

of the round keys is based on the SubBytes function and uses 

additionally some simple byte-level operations like XOR. In 

each round of the key schedule the last 32-bit word is rotated 

then the S-Box has to be applied. As a result four modules of 

the S-Box are required.  

A constant called Roundconstant is also added to the output of 

the S-Box circuit with an XOR gate. This result is combined 

with the first 32-bit word with an XOR to generate the first 32-

bit word of the new round key. The other three new 32-bit 

words are computed from the oldvalues and an XOR operation 

with the other inputs according to the algorithm as illustrated 

in Fig. 8. 

 

 
Fig.8:Key Expansion implementation circuit.  

3 FPGA IMPLEMENTATION OF THE 

PROPOSED AES DESIGN ARCHITECTURE 

 

The proposed iterative design of the AES processor shown on 

Fig. 4 was used for the implementation on the FPGA. Two 

different architectures were optimized for implementations on 

the FPGA which are iterative architecture and fully-pipelined 

architecture for increasing the speed at the cost of increased 

area. 

3.1 The Basic Iterative Architecture  

In this architecture each round manipulates 128 bits together.  

All 10 rounds are identical with the exception of the final 

round, which does not include the MixColumns 

transformation. The iterative method allows the calculation of 

one AES round per clock cycle. This leads to maximum 

hardware utilization in a comparison to the unrolled 

architecture because the same piece of hardware is used for all 

round transformations while the result is iteratively stored in a 

register and used as input to the next round. The key 

expansion unit generates one round key per clock cycle. Fig. 9 

shows the general design of basic iterative AES core based on 

FPGA implementation. 
The design consists of three main units: 

 Controller unit. 

 AES round transformation unit. 

 Key expansion unit. 

The round transformation unit and key expansion unit are 

shown in Fig.4 and Fig.8 respectively and described in detail 

in the previous section.The total design has 388 pins. It 

requires the Plain_text, Key and Cipher_text which have a 128 
bit length. The signals used to control the proper operations of 

the core are clk, reset, start and done. 
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Fig.9:General Architecture of the proposed design 

As the IOBs requirements of the basic iterative AES 

architecture, exceeds the xc3s500e-4fg320 device resources, 

which has just 232 IOBs, Plain text and key are multiplexed 

into one wire called Key_plain_text and stored in registers to 

be processed later on in parallel. So, the final architecture 

multiplexes the Plain text and Key 128-bit buses. No 

additional clock cycles are required. In a given clock cycle, a 

bus is registered, and in the next clock cycle, the other bus. 

The output Cipher_text is divided into two 64-bit nipples, the 

lower nipple (from bit 0 to 63) is sent first when the signal 

done is activated and the higher nipple (from bit 64 to 127) is 

sent in the following clock cycle so, to obtain the 128-bit 

Cipher_text output an extra clock cycles is required in the last 

round (Round10) where the processor stays for two clock 

cycles. Fig. 10 shows the resulting modification in I/O 

diagram of the AES processor. 

 

 

Fig.10: I/O diagram of AES processor 

3.1.1 Controller Unit 

A 12-state Finite State Machine, FSM was used to implement 

the controller and to keep track of the current round since it is 

easy to debug and upgrade. The output control signals of the 

FSM are described in Table 1. The state diagram and FSM 

initial values are shown in Fig.11. As can be seen, the input 

signal start modifies the current state from Idle state to 

Round0 (initial round) state in which the key and input-text 

(Cipher-text XOR Key) are registered. In this state, the two 

control signals Mul-Sel1 and Mul-Sel3 have value of logical 

one to control the data flow of both input-text  and round-

cipher-text (1 for input-text and 0 for and round-cipher-text), 

while the Mul-Sel13  selects the input key or round-key (1 for 

input key and 0 for round-key). Also the next ten states 

compute the ten roundsleft. Each round key, as well as round 

transformation, is completed in one clock cycle. In each of the 

following clock cycles, Round1 to Round10 states are active, 

in each, different ROUND-Constant value is applied to the 

Key Expansion module. The process is completed in Round10 

when the done signal is pulsed.Only in this state, done=1 

indicates a valid output. The done signal is activated only for 

two clock cycle because the output Cipher text is divided into 

two nipples. The lower 64-bits nipple is passed then in the 

next cycle the higher 64-bit nipple is passed. This division is 

done due to the lack of IOB pin of the target FPGA. 

 
Table1:  Control Signals 

State Control Signals 

Round-

cons 

Mul-Sel1 Mul-Sel2 Mul-Sel3 done 

Idle - - - - - 

Round0(R0)  1 0 1 0 

Round1(R1) 00000001 0 0 0 0 

Round2(R2) 00000010 0 0 0 0 

Round3(R3) 00000100 0 0 0 0 

Round4(R4) 00001000 0 0 0 0 

Round5(R5) 00010000 0 0 0 0 

Round6(R6) 00100000 0 0 0 0 

Round7(R7) 01000000 0 0 0 0 

Round8(R8) 10000000 0 0 0 0 

Round9(R9) 00011011 0 0 0 0 

Round10(R10

) 

00110110 0 1 0 1 

 

 

Fig.11:  FSM Implementation of the Top controller module of 

the AES 
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3.2 The Pipelined Architecture 

This architecture is used to increase the throughput at the cost 

of increased area by adding more inner and outer pipelining 

registers to achieve multiple processing simultaneously.  As 

shown in Fig. 12, the architecture of the proposed fully 

pipelined AES processor is composed of ten AES functional 

blocks and key expansion circuits. The inter-pipelined and 

outer-pipelined stages are utilized for implementations.  In the 

inter-pipelined   scheme, the register arrays are allocated 

among the operational circuits of SubByte, MixColumns and 

AddRoundKey.  The use of the S-Box as one continuous path 

would be costly in terms of logic delay hence reducing the 

highest possible achievable clock frequency. The S-Box block 

is further divided into five pipelined stages to break the logic 

delay in an attempt to achieve a higher clock frequency. Fig. 

13 shows the applied pipeline registers in the S-Box where the 

dotted line indicates a pipelined register. In addition one 

Pipelining register is added to the MixColumns. From Round1 

to Round7, 5-stages S-Boxes based combinational logic 

implementation are used, while in Round8, Round9 and 

Round10,  the S-Boxes  are mapped  into Block RAMs. The 

number of inner pipeline registers equal to 7×7(form Round1 

to Round7) plus 2× 3 due to the use of Block RAMs (from 

Round8 to Round10). 

 

 

Fig.12:AES fully pipelined architecture 

 

Fig.13: Multiplicative inversion module for the S-Box 

In the outer pipelined scheme, ten pipelining registers are 

added between each AES round computation. Thus, the 

latency delay of the proposed full-pipelined AES processor is 

65 clock cycles (55 inner +10 outer. As result of this 

architecture, the throughput is 128 bits per clock cycle. 

4. PERFORMANCE RESULTS AND COMPARISON 

WITH RELATED WORKS 

Both the basic iterative architecture shown in Fig.4 and the 

fully pipelined architecture shown in Fig. 12 have been coded 

by Verilog HDL and implemented on a Xilinx Spartan-3E as a 

target device. All the results are synthesized, simulated and 

implemented based on the Xilinx ISE 13.4 design tool, the 

ISim simulator was used to perform functional and timing 

simulations for the Verilog design and the Xilinx XST 

synthesis tool was used for performing logic synthesis. For the 

basic iterative architecture, two different implementation 

techniques of S-Box are used, the first method is based on 

combinational logic implementation of S-Box as described 

previously and the second method is using 256 × 8 bit Rom 

lookup table using the special feature of Xilinx Spatan-3E that 

has block RAMs. These are dedicated embedded memory 

blocks ideal for implementing S-Box. These block RAMs can 

either be used as Single or Dual port RAM. In this work, a 

Dual port RAM is configured as two separate Single port 

RAMs as shown in Fig.14. Thus two S-Boxes can be 

implemented in one block RAM only, therefore utilizing each 

Dual port RAM block as two single ports RAM, 20 S-Boxes 

are realizable in 10 block RAMs. 

 
Fig.14:One Block RAM becomes two independent Single-Port 

RAMs used to implements two S-Boxes 

The performance results and FPGA resources required of our 

proposed architectures are shown in Table 2. These results are 

taken after Placing and Routing report of the design.As can be 

seen from Table 2, the resulting utilization hardware by the 

AES processor with maximum place-and-route efforts for the 

different architecture is varying according to the device used 

and techniques used in the design. For instance, the speed 

grade of the device defines the maximum toggle frequency of 

the CLB. And using of the Block RAM leads to lower 

resource in terms of the slices (from 1563 to 347) and lower 

critical path time, thus higher clock frequency and maximum 

throughput (from 0.7034Gbps to 1.3988Gbps) regarding the 

basic iterative architecture. A very high throughput of 



7th Annual Conference for Postgraduate Studies and Scientific Research - Basic Sciences and Engineering Studies  

20-23 February 2016, Friendship Hall, Khartoum, Sudan 

 

16 

 

31.3341Gbps is achieved using the fully pipelined architecture 

and a mix of BRAM and combinational logic to implement the 

S-Boxes. 

Table2. Implementation performance results after place and 

route 

 

Table 3:IComparison with other FPGA implementation of 

AES basic architecture 

Ref # Device BRAM 

or 

BROM 

Slices Max 

clock 

(MHz) 

Latency 

(clk 

cycles) 

Throughput 

Gbps 

[15] 
Enc/Dec 

XC2V8000 

-5 

4 8378 65 10 0.832 

[16] 

Enc 

XCV812 36 2744 22.41 11 0.259 

[17] 

Enc/Dec 

XCV300 

BG432 

- 2358 22 11 0.259 

[18] 
Enc/Dec 

XCV1000e 

-8 

- 5150 76 21 0.463 

[19] 
Enc/Dec 

XC2V3000 

-6 

0 7617 75.3 11 0.876 

[20] 
Enc/Dec 

XC2S200E 6 196 28.742 250 0.0164 

[20] 

Enc/Dec 

XC2V500 6 192 78.59 250 0.0406 

[21] xc3s200pq2 

08 

-5 

10 481 231.97 11 2.699 

[22] Xilinxxcv1000bg 

560-4 

0 3528 25.3 11 0.2942 

[23] 

Enc 

XC2V1000- 
FG456 

20 

distrib 

memory 

2335 86.94 10 0.92 

[23] 

Enc 

XC2V1000- 
FG456 

10 586 96.42 10 1.45 

[24] Virtex-II 

Pro 

44 2703 

LUT 

196 - 1.19 

[25] 
Enc/Dec 

XC2S30 

-5 

3 222 50 - 0.139 

[28] Spartan-3 

XC3S20 

11 148 287 - 0.632 

[31] 

1S-Box 

Virtex4 0 2018 

LUTs 

123 400 0.040 

[31] 

2S-Box 

Virtex4 0 2214 

LUTs 

130 180 0.0925 

[31] 

4S-Box 

Virtex4 0 2490 

LUTs 

145 130 0.142 

A comparison of our results has been carried out with other 

similar FPGA implementations of the AES. Table 3 reports the 

measurements of basic iterative hardware architectures. 

Noticing that, different device families and speeds will yield 

different performance results in addition to data-path width of 

the architecture. Table 4 reports the performance of the 

pipelined architecture. 

Table 4: Comparison with other FPGA implementation of the 

AES pipelined architecture 

Ref# Device Block 

RAMs 

Slices 

Or 

LE 

Max.clock 

(MHz) 

Latency 

(clkcycles) 

Throughput 

Gbps 

[26]  

Enc 

VirtexII 

-Pro 

84 5177 168.3 31 21.54 

[26]  

Enc 

XC2VP20 

-7 

0 9446 169.1 71 21.64 

[27] XCV812e 

-6 

0 9406 71.8 - 8.968 

[27] XCV800 

-8 

0 9406 93.5 - 11.685 

[27] XCV1000 

-6 

0 11014 125.3 - 15.65625 

[27] 

Enc 

XCV1000e 

-8 

0 11022 168.4 71 21.56 

[28] Spartan- III - 20720 240.9 - 30.11 

[29] Virtex- II - 31674 222.8 - 27.86 

[19] 
ENC/Dec 

XC2V3000 

-6 

0 139357 222.2 51 28.4 

[10] 
Enc/Dec 

Cyclone 

II 

18 3039 

LEs 

198.93 40 2.546 

[14]  

Enc 

XC2VP70 

-7 

200 5408 232.6 60 29.77 

5 SIMULATION RESULTS 

The simulation results of AES encryption module are shown in 

Fig. 15 and Fig. 16. The Plain_text, Key and the expected 

output Cipher_text vectors were taken from FIPS publication 

[32] and the AES algorithm validation suite [33]. Here are 

samples of the data which was applied to the test in the same 

order: 

1) Firstly: 

 Plain_text: 3243f6a8885a308d313198a2e0370734. 

 Key: 2b7e151628aed2a6abf7158809cf4f3c. 

 Cipher_text: 3925841d02dc09fbdc118597196a0b32. 

2) Secondly: 

 Plain_text: 00112233445566778899aabbccddeeff. 

 Key: 000102030405060708090a0b0c0d0e0f. 

 Cipher_text: 69c4e0d86a7b0430d8cdb78070b4c55a 

3) Thirdly: 

 Plain_text: 80000000000000000000000000000000. 

  Key: 00000000000000000000000000000000. 

 Cipher_text: 3ad78e726c1ec02b7ebfe92b23d9ec34. 

Architectu

-re 

S-

Boxtechni

que 

FPGA 

Device 

Slices Block 

RAM 

Max 

Clock 

MHz 

Laten-

cy 

cycles 

Throughput

Gbps 

Basic 

iterative 

Combinati

-onallogic 

Spartan3E 

xc3s500e-

4 

1563 0 71.444 13 0.7034 

Basic 

iterative 

Block 

RAM 

Spartan3E 

xc3s500e-

4 

347 10 142.066 13 1.3988 

Fully 

pipelined 

Pipeline 

S-Box 

Spartan3E 

xc3s1600e

-5 

14710 30 245.761 65 31.4574 
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4) Fourthly: 

 Plain_text: 00000000000000000000000000000000. 

 Key: 10a58869d74be5a374cf867cfb473859. 

 Cipher_text: 6d251e6944b051e04eaa6fb4dbf78465. 

5)  Fifthly: 

 Plain_text: ffffffffffffffffffffffffffffffc0. 

 Key: 00000000000000000000000000000000. 

 Cipher_text: 0833ff6f61d98a57b288e8c3586b85a6 

Fig. 15 shows the simulation results of the basic iterative AES 

algorithm. As can be seen, the output Cipher_text result of the 

encryption was completed in 13 clock cycles and the done 

signal goes high every 13 clock cycles. 

 

 
Fig.15: Simulation result of a basic iterative AES architecture 

Fig. 16 shows the simulation results of the pipelined AES 

algorithm. It is clear that the output Cipher text result of the 

encryption was obtained after 65 clock cycles. The throughput 

achieved by this architecture is 128bits per clock cycle. All 

results were successfully verified against the expected sample 

Cipher text results. 

 

 

Fig.16: Simulation result of the Pipelined architecture 

6 HARDWARE TESTING 

For the hardware testing of the AES processor functionality 

implemented using Spartan-3E Starter Kit board which houses 

the target FPGA (XC3S500E-4), additional test circuitry and 

modules were added to the design and integrated to the AES 

design in order to perform such tests. Most of the IOB pins are 

interfaced with components on the board and are not available 

to use. Fig. 17 shows the test circuit, a clock source of a 

50MHz clock from oscillator is connected to the AES 

processor. The same first four vectors of Key and Plain_text 

were stored in ROM and are read at every 13 clock cycles of 

AES processor latency. This is calculated by the clock divider 

module. At each 13-clock cycles different Key and Plain_text 

are supplied to the AES Enc module. Thus the output result of 

the AES encryption is stored in BRAM to be read and verified 

later. Each Cipher_text result was stored in a different location 

in RAM according to the address controlled by the FSM 

controller module. When writing to the RAM ends, the 

reading process takes place. The values written to the RAM 

are passed to the LCD module to be displayed on the 2 

line×16 character LCD. This is enough to display one result at 

a time. 

 

 

Fig.17:Testing hardware circuits 

 

Fig.18: The first output Cipher text result when sel=2’b00 
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Fig.19:The second output Cipher text result when sel=2’01 

 

Fig.20:The third output Cipher text result when sel=2’10 

 

Fig.21: The third output Cipher text result when sel=2’11 

As can be seen in Fig. 18, Fig. 19, Fig. 20 and Fig. 21, the 

results of the hardware testing of the AES encryption 

processor were verified and found to be identical to simulation 

results. 

7 CONCLUSION 

Two different architectures for AES encryption processor are 

proposed, the basic iterative and the fully pipelined methods. 

Two implementation techniques for the S-Box, the Block 

RAM available in the Spartan-3E FPGA andthe fully 

combinational logic are used.Also mixing between the two 

techniques in the fully pipelined architecture yields a 

maximum throughput of 31.4574Gbps using 30 Block RAMs 

and 14720 Slices of Spartan-3E FPGA with an optimum 

number of pipeline stages for the S-Box. The encrypted 

cipher_text results are analysed and proved to be correct using 

simulation and hardware verification and both results are 

identical. The encryption efficiency of the proposed AES 

algorithm was studied and compared with other similar FPGA 

implementations of AES algorithm. We found that, using of 

the BRAM leads to lower resource in terms of the slices and 

lower critical path time, thus higher clock frequency and max 

throughput. 
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