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Abstract: Cognitive radio is considered as an intelligent wireless communication system proposed to improve the utilization of
the radio electromagnetic spectrum. In CR technology the secondary users take the responsibility of dynamically sensing and
accessing any unused channels in the spectrum allocated to the licensed users. As spectrum sensing consumes considerable
energy, predictive methods for inferring the availability of spectrum holes can reduce energy consumption of the unlicensed users
to only sense those channels which are likely to be idle. It also helps to improve the spectrum utilizations. Several prediction
techniques have been used to predict spectrum utilization. However, most of current approaches do not consider seasonality in
spectrum workload, for example most of the channels are busy during business hours in mobile phone bands. This paper; proposes
a channel status predictor based on the multiplicative seasonal model called Holt-Winters’ method. The proposed prediction
method has the ability to adapt with changes in trends and seasonal patterns of the sensing observations. Performance analysis

and the accuracy of the channel status prediction schemes are investigated.
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1. INTRODUCTION

Cognitive Radio (CR) has emerged as one of the key
techniques that can help in addressing the inefficient usage of
the radio spectrum, without requiring the allocation of new
frequency bands by opening up the unused licensed
frequencies to secondary users for opportunistic access.
Spectrum utilization can be improved significantly by
permitting opportunistic access to white spaces at the right
place and time. For spectrum sharing-scheme and to work
efficiently, it is mandatory to know the presence or absence of
the primary user before exploiting spectrum opportunities. To
do so, various spectrum sensing schemes [1]-[4] have been
proposed so far to minimize the interference to the primary
users, these schemes are: energy detection, cyclostationary
detection and matched filter detection.

Each detection method has its own pros and cons. Energy
detection scheme is more popular due to its simplicity and less
complexity over match filtering and cyclostationary feature, it
also requires less number of samples for detection. Many
techniques have been proposed to enhance the performance of
energy detector. For example, cooperative spectrum sensing is
used to improve the detection performance [5] or adapting
sensing threshold based on channel sensing information [6]. In
most of these works, signal to noise ratio at secondary.

Transmitter is considered to adapt sensing threshold with the
assumption that it has full knowledge of channel state
information (CSI). From a practical point of view, it is never
possible to have full knowledge about the channel conditions
as it is time varying in nature and thus keep changing with
time and geographical location, so spectrum sensing module

Can be efficient by combining the sensing operation with a
channel status prediction mechanism. The secondary user may

Predict the status of a channel based on the past sensing results
and sense only if channel is predicted to be idle in next time
slot. Thereby, the secondary user may use its sensing
mechanism resourcefully.

Besides, using channel status prediction to estimate the
effective bandwidth in the next slot will allow the secondary
users to adjust the data rates in advance. This paper studies
few methods of channel state prediction in cognitive radio
wireless network and discusses their performance. It also
demonstrates the advantages of channel status prediction to the
spectrum sensing operation in terms of improving the
spectrum utilization (SU) and saving the sensing energy and
due to seasonality of channel availability, proposes a channel
status predictor based on the multiplicative seasonal model
called Holt-Winters’ (HW) method. The rest of this paper is
organized as follows: Firstly, we present an overview of
spectrum prediction in CR network, then presenting Holt-
Winters seasonal based prediction. Energy Detection Scheme
is shortly described. Finally, the analysis of the model scheme
and results are presented then future research directions are
illustrated.

2. PREDICTION FOR COGNITIVE RADIO

In CR networks a spectrum sensing scheme uses received
signals to detect channel states, and it virtually predicts
channel states in the near future simply using previous
detected channel states. Intensive work on prediction for
cognitive radio has been reported.

Statistical methods are widely used in spectrum occupancy
and spectrum availability prediction. A statistical spectrum
occupancy model [7] was designed to generate accurate
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temporal and frequency behavior of various wireless
transmission based on a combination of several probability

Density functions. Spectrum occupancy characterization
prediction was proposed in [8] using binary time series. The
performance of the predictor suffered due to the non-
deterministic nature of the binary series. A neural network
model multilayer perceptron (MLP) that maps sets of input
data onto a set of appropriate output was used in [12], [13].
The input data is the history observations while the output is
the prediction of the future states. The main challenge in MLP
is the training of the model. Autoregressive model (ARM) in
[16] was used to predict the status of the licensed channel; CR
user first estimates the model parameters with maximum
likelihood estimation or moving averages.

Then, it inputs the history observations into the prediction rule
and predicts the future state of the system. This model requires
knowledge of the primary user's traffic characteristics which
may not be known. Moving average (MA) predictor [17]
predicts the next value of the sequence as the average of the
last values in the sequence. An upgrade version (exponential
moving average EMA) based prediction [18], used to enhance
the influence of the most recent observations on the prediction
result. Bayesian theorem [14], [15] provides a method to
describe the relation between the new information and
updating posterior distribution. Current knowledge about the
parameters is expressed by placing a probability distribution
on the parameters (prior distribution). When new data
becomes available, it is expressed in the likelihood which is
proportional to the distribution produces an updated
probability distribution called the posterior distribution.

Markov models and hidden Markov models (HMM) are also
commonly used in spectrum availability prediction. The main
idea is that the latent state of the system, together with other
non-observable information, are hidden as part of an
observation process affected by some “noise”. This hidden
information is assumed to keep track of the dynamics of the
finite-state Markov chain in discrete or continuous time [9],
[10], and [11]. However, not all frequency channels were
validated to fit the property of Markov chains and hidden
Markov chains. In addition, the initial parameters needed in
the Markov chain approach are hard to choose. Another
limitation of first order HMM is that a state only depends on
one immediate previous state.

3. HOLT-WINTERS SEASONAL BASED PREDICTION

In cognitive radio networks, channel selection is carried out
based on the history of incumbents’ behavior of the channel
over a period of time. Using the data recorded in the channel
status table, SUs estimate the channels’ status based on the
multiplicative seasonal model for the next time slot.

Time-series forecasting assumes that a time series is a
combination of a pattern and some random error. The goal is
to separate the pattern from the error by understanding the
pattern’s trend, its long-term increase or decrease, and its
seasonality. Several methods of time series forecasting are
available such as the Moving Averages method, Linear
Regression with Time, Exponential Smoothing etc. This work
concentrates on the Holt-Winters Exponential Smoothing
technique as applied to time series that exhibit seasonality.
The Holt-Winters method is a popular and effective approach
to forecasting seasonal time series. Different implementations
will give different forecasts, depending on how the method is
initialized and how the smoothing parameters are selected. The

Holt-Winters multiplicative seasonal method [19], comprises
the forecast equation and three smoothing equations one for
the level ((t), the second for trend (bt), and the third for the
seasonal component denoted by (sz), with smoothing
parameters @, f and y, the number of seasons m is used to
denote the period of the seasonality.

Exponential Smoothing assigns exponentially decreasing
weights as the observation get older. In other words, recent
observations are given relatively more weight in forecasting
than the older observations. The level is a smoothed estimate
of the value of the data at the end of each period. The trend is
a smoothed estimate of average growth at the end of each
period. Seasonality Index (S7) of a period indicates how much
this period typically deviates from the annual average. At least
one full season of data is required for computation of S7 /22].

Suppose the time series is denoted by yy,...,y, and the seasonal
period is m. Let ¢y , be the A-step forecast made using
data at time t. Then the multiplicative formulation of Holt-
Winters’ method is given by the following equations:

Level smoothing:

b= a (yi/si-L) + (1-a) (L +bi-y) (D

Where y(t) is the observation, ({;) for level factor, S,; is the
seasonal factor and 0 < a < | is a smoothing constant, each
smoothed value is the weighted average of the previous
observations, where the weights decrease exponentially
depending on the value of parameter (o). Dividing y, by sy,
(which is the seasonal factor for period T computed one
season L periods ago), deseasonalizes the data so that only the
trend component and the prior value of the permanent
component enter into the updating process for of the
deseasonalized level £..

Smoothing of the trend factor:

b= Bl L) H1-P) by 2

Where b, is the trend factor and 0 < B < 1 is a second
smoothing constant. The estimate of the trend component is
simply the smoothed difference between two successive
estimates of the deseasonalized level.

Smoothing of the seasonal index:
5= 7 (y/ (b1 tbe1)) + (1—y) 5L 3)

Where 0 <y <1 is the third smoothing constant. The estimate
of the seasonal component is a combination of the most
recently observed seasonal factor given by the observations y;
divided by the deseasonalized series level estimate {,_; trends
and the previous best seasonal factor estimate for this time
period.

Values of Prediction:

Assuming that the seasonal pattern is relatively constant over
the time period value of Holt-Winters prediction values will be
given by:

1. Prediction for the next period
F,=({,_,+b_)S_, 4)

Note that the best estimate of the seasonal factor for this time
period in the season is used, which was last updated L periods
ago.

2. Multiple-step-ahead forecasts (for h) The value of
forecast h periods hence is given by:
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A

Fo=0+ hb)S,., . )

Ft+h|t is the forecast at & periods ahead, ¢ is an index denoting
a time period. The constants a, B, and y must be estimated in
such a way that the Mean square error (MSE) of the error is
minimized.

A. Initial values of model parameters

The level is obviously the average of the first season of data.
For initialization the level factor will be calculated as:

ln=(y1t...+¥m)/m (6)
The initial trend is given by
b= (Yoo 1T Ymea o HYimem) (Y1 FY2 Y)Y 7

The trend is set to be the average of the trends for each period
in the first two seasons:

(Ym+— y)/m, (Ymez™ Y2)/m,(Ymem™ Ym)/m. ()]

Then, for multiplicative seasonality s;=y;/{,,, where i=1,...,m.
The initial seasonal values Sy.,...,S0 are computed from
experimental subjective assessments, before any data is taken
into account. Through n time-slot spectrum sensing, some
observed data are collected. Then, the CR user computes a
seasonal factor, as the probability of the observed data given
that parameter, then SUs can estimate the channels’ status
based on the multiplicative seasonal model for the next time
slot by fitting a moving average smoother to the first 2 or 3
seasons data then divide the smooth trend by the original data
to get de-trended data. The initial seasonal values are then
obtained from the averaged de-trended data. Next divide the
seasonal values by the original data to get seasonally adjusted
data. Fit a linear trend to the seasonally adjusted data to get the
initial level €, and the initial trend slope b,.

B. Stationarity

To perform forecasting, most techniques require the
stationarity conditions to be satisfied. Time series X(t) is a first
order stationary if the expected value of y(t) remains same for
all t, so during the formulation of the problem, the channel
state transition probabilities along one time slot was assumed
to be constant.

The analysis of the results obtained is based on considering the
following variables: observation of channel availability or
probability of detection (P4) and error criteria analysis (root
mean squared error (RMSE), mean absolute percentage error
(MAPE) and mean absolute error (MAE)).

4. ENERGY DETECTION SCHEME

Spectrum sensing can be described as a method for identifying
the presence of a signal in a noisy environment and can be
described in its simplest form [17] as a binary hypothesis
problem as,

Hy: y[n] =w[n]
H,: y[n] = x[n] +w[n]

Where y/n] denotes the received signal, x/n]/ expresses the
primary signal, w/n] is noise and 7 is the sample index. The
null hypothesis, H,, corresponds to the absence of a primary
signal, whereas the alternative hypothesis, H;, indicates the
presence of a primary signal. In order for the SU to distinguish
between hypotheses Hy and Hy, a test statistic, T,, is compared
with a detection threshold, A, as follows,

n=1..N 9)
n=1,..N

H1
Tx 2 A (10)
HO

The sensing accuracy can be evaluated using three
probabilistic metrics known as the: probability of detection,
(Py); probability of missed detection, (P,,q); and probability of
false alarm, (Pg). P4 expresses the rate of correct signal
detections, while Py, expresses the rate of incorrectly detecting
a signal which is actually not present. P4 expresses the rate of
detection failures. These metrics are expressed as conditional
probabilities by:

Py =P(Tx> A|H)) (11)
Pfa = P(Tx > A | HO) (12)
P =P(Tx <A |HI) (13)

In Energy Detection ED-based spectrum sensing, the received
signal is altered within the bandwidth of interest, squared and
integrated over a given observation interval in order to
measure the received signal's energy level and then compare it
with a detection threshold. The received signal can be
mathematically described as:

y(m) =xm) + w(n) (14)

Where x(n) is the transmitted signal, w(n) is the Additive
White Gaussian Noise (AWGN), and 7 is the sample index.

For simplicity, both the noise and the signal term are modeled
in Gaussian random variables with zero mean and variance ¢
therefore, x(n)=N(0,62). Simulated value for Gaussian
primary user signal was represented by:

x (n) =+SNR.rand(1,N) (15)

Where rand(1,N) is AWGN noise, SNR is signal to noise ratio.
In ED-based spectrum sensing the test statistic is obtained by
the received signal's energy as,

TED = Y¥n_olX(m)|? (16)

Tgp, is a sum of N Gaussian random variables, the Probability
Density Function (PDF) follows a chi-squared distribution. N
represents the maximum number of samples. Hence, based on
the Central Limit Theorem (CLT), the test statistic can be
approximated by a Gaussian distribution as,

N(No2,2Na}) ,Ho

Tepe
ED~{N(N(J‘,%, +02),2N((02 + 02)?) JH1

(17)

The closed-form expressions for the probabilities Py, and Py
over AWGN are evaluated as: [6].

Ay

P,fQ("yﬁ ) (18)
N

Pd=Q(%> (19)

Where A is the detection threshold and the SNR = 62 /52 .

Q-function, the generalized Marcum is denoted by:

x%+a?
1 0 272
Qm(a,b) = —— Joxme T2 gmop(ax).dx

Although ED-based spectrum sensing is considered as the
most popular spectrum sensing method, it has several
limitations including: poor detection performance in low SNR
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regions; need for accurate noise variance estimation; and
inability to differentiate between different types of PU signals.

The Py, target values may vary depending on the application.
However, Py, values between 102 and 107 are considered in
the literature, whereas the IEEE 802.22 standard recommends
a Py, <10 [21]. High Py, values result in inefficient spectrum
utilization and hence, an overall performance degradation.
Thus, for optimal spectrum sensing, high detection probability
is required, while false alarm probability must be kept as low
as possible to prevent spectrum under-utilization. As a result, a
pair of high Pd and low Py, indicates superior detection
performance.

Spectrum sensing based on ED is obtained by plotting Py
versus Py, as shown in Fig.1.
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Fig.1. Energy Detection Performance.

Fig.1 describes the probability of detection of an idle channel
Py based on conventional energy detection scheme over
AWGN for a range of a SNR values. The Py; line refers to the
ideal theoretical values.

The received SNR depends on the PU transmit power and
propagation environment and it can significantly affect the
detection performance in terms of Py, P, and P,,4 equation 15).
As expected, the detection performance improves as the Signal
to Noise Ratio (SNR) increases. Thus, achieving a target
sensing accuracy at low SNR regions suggests superior
detection performance fig 2.
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Fig.2. ED-based Spectrum Sensing Over AWGN for Different
SNR.

According to Fig 2 It is evident that the detection performance
is improved as the received signal's SNR increases since the
curves move towards the upper left corner of the space, it also
showed the poor energy detection for low SNR that’s prove
the need of channel status prediction to the spectrum sensing
operation in terms of improving the sensing schemes and
saving the sensing energy.

5. FRAME WORK AND SIMULATION MODEL

In our framework, receiver senses through a sensing time slot
with the intention of acquiring the intended level of detection

quality (assuming the sensing error is negligible). The SUs are
monitoring the PU activity using ED-based spectrum sensing
and stores the sensing outputs in its memory. The past
spectrum sensing outputs are then used as inputs into the
seasonal Holt-Winters based prediction model to determine the
spectrum occupancy output at future time instants as depicted
in Fig.3. Upon the request of data transmission the SU senses
only the channels that have been predicted to be unoccupied.

Channel 1
. Spectrum occupancy
pradiction

ED-bazed Spectrom Sensing R —
Semrving Hivioery
"
Prodiction
Nlods]

Pradiction cotpat
-

Channsl n

Fig.3. Frame work model.

As depicted in Fig. 3, the channel occupancy in a slot can be
represented as busy or idle depending on the presence or
absence of a primary user activity. A time series y (t) is
generated for the channel by sensing (or observing) the
channel occupancy for a duration time. The time series is
converted into a binary time series of 0’s and 1’s using three
sholding. The binary symbols 1 and 0 denote the busy and idle
channel status, respectively.

Using the binary series, the predictor is trained to predict the
primary user activity in the next slot based on past
observations by obtaining the trend and seasonal factors as
expressed in equation (4) and (5). Noise is modeled as AWGN

with variance a,,=1 and the corresponding noise samples are
drawn from a Gaussian random process N (0, 1). In a multiple
channel system, a predictor is assigned to each channel.

Simulated results are presented to validate the theoretical
results of the proposed scheme. The model was simulated in
MATLAB environment.
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Fig. 4. Holt-Winter based prediction curve for channel
occupancy.

Fig 4 shows the performance comparison between random ED
sensing (binary series obtained from the observations) and
channel predicting occupancy based on Holt-Winters scheme.
It can be seen that the Holt-Winters predictor performance
follow the real history seasonal observations.
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Fig.5. Probability of Detection using HW Model

Fig.5 compares the performance of different detection
probabilities, theoretical, conventional energy detection, and
Holt-Winters predictor-based scheme. Holt-Winters predictor-
based scheme shows higher values for probability of detection
P4 than the conventional P4 and theoretical Py under the same
traffic scenario. The prediction performance is then evaluated
by comparing predictor's output with the occupancy states of
the test data-set. Tables I display the errors between real and
predicted data of the models. This analysis included different
variables to estimate errors: root mean squared error RMSE
and mean absolute percentage error MAPE. Holt-Winters’
model offers low error values.

Tablel. Errors among the forecasted models for channel
occupancy

20 40 60 80 100 120

Where idle sense and Idle predict, represent the number of

Idle slots sensed by the CR-sense and the CR-predict devices,
respectively. Table I shows that a CR predict device using
Holt-Winter predictors can discover more idle slots than a
CRsense device. The percentage of improvement in SU is
more than 82% when the CR predicts device uses Holt
Winter’s predictor.

Table II shows that a CR predict device using HW predictors
can discover more idle slots than a CR sense device. The
percentage of improvement in SU is more than 82.5% when
the CR predicts device uses Holt Winters predictor.

Table 2. Performance improvement in sensing

ED Idle_sense HW HW Imp (%)
Idle_predict
92.415 175 82.500000

MAPE RMSE

0.007817 0.000542

6. ED-PREDICTION PERFORMANCE IMPROVEMENT

Performance for prediction schemes in spectrum sensing is
evaluated using two performance measures, percentage
improvement in spectrum utilization and percentage reduction
in sensing energy.

C. Improvement in Spectrum Utilization

Consider network with each secondary user (CR) is able to
sense only one channel during a slot due to the hardware
constraint then every secondary user stores a short history of
the sensing results for every channel, this information can be
collected from neighbors over a common control channel.
Considering two types of secondary users, one device
randomly selects a channel at every slot and senses the status
of that channel, while the other one individually predicts the
status of all channels based on their respective slot history,
before sensing, both devices use the same sensing mechanism
and have the same level of sensing accuracy.

The channel to be sensed by the CR-predict device is
randomly selected among those channels with idle predicted
status. SU’s spectrum utilization can be defined as the ratio of
the number of idle slots discovered by the secondary user to
the total number of idle slots available in the system over a
finite period of time (e.g.10K slots).

Number of idle slots sensed

SUutilt‘zi

(20)

Total number of idle slots in a period of time

The percentage improvement in channel utilization due to
channel status prediction can be expressed as:

Imp (%) :(Idlepredict - Idlegense)*100 2D

D. Reduction in Sensing Energy

CR sense device senses all the slots whereas a CR predicts
device only senses when the channel status of the slot is
predicted to be idle. In other words, when the slot status is
predicted to be busy, the sensing operation is not performed,
thereby sensing energy is saved. We assume both device types
use the same sensing mechanism and have the same level of
sensing accuracy. If we assume one unit of sensing energy is
required to sense one slot, then the total sensing energy
required for a CR sense device in a finite duration of time
(e.g., 10 000 slots) can be given by:

SEsense= (total No of slots in duration) X (unit sense energy) (22)

While the total sensing energy required by the CR predict
device can be given by:

SEpredict = (SEsense — (Busypredict)) x (unit sensing energy) (23)

Where Busypredict is the total number of busy slots predicted
by the CR predict device. Therefore, the percentage reduction
in the sensing energy can be given by:

= SEsense - SEpredict Busypredict

SEred(%) 4)

SEsense Total number of slots

Table III shows the percentage of reduction in the sensing
energy when CR predict devices with HW predictor and, It can
be seen that, more busy slots are predicted and hence more
sensing energy is saved.

Table 3. Sensing Energy Reduction

SE Total No of
slots

Predicted SE Reduction in SE

10000 173.0 82.7 (%)

When predictive spectrum sensing is employed, the CR senses
only the channels that will be predicted to be unoccupied.
Hence, for predictive spectrum sensing the number of sensed

Channels equals to the number of the predicted channels,
Nsense = Npredict, with Npredict < Ntotal. Therefore,
predictive spectrum sensing is expected to reduce the sensing
cost in terms of the required sensing energy and time. The
percentage of saved sensing cost compared to the conventional
ED-spectrum sensing is obtained as,
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Ntotal_Npredict
COStScnsing = Nitotal (25)
ota.

Predictive spectrum sensing can obviously reduce the sensing
cost compared with conventional ED-based spectrum sensing.

CONCLUSIONS

Since, wireless channel in Cognitive Radio networks is time
varying in nature, it is extremely difficult to estimate it
accurately through the conventional detection scheme with
fixed threshold. Therefore channel selection process employed
by SUs in a CR network should benefit from improved
methods to correctly and quickly perform channel allocations.
This may lead to a reduction in the number of unnecessary
channel switches to be performed. This will increase SU data
throughput, reduce the amount of interference experienced by
PUs due to SU activity and reduce the energy used for sensing
the channels. This research validates predictive methods for
the availability of channels. This approach allows CR
terminals to sense only the channels that are predicted to be
unoccupied rather than the whole band of interest. Based on
this approach, a spectrum occupancy predictor is developed
and experimentally validated.

The proposed scheme achieves a prediction accuracy of up to
93% which in turn can lead to up to 84% reduction of the
spectrum sensing cost. The proposed model aims to improve
upon existing channel prediction methods by focusing on
providing better prediction accuracy, quicker solution
convergence times and lower computational complexity. A
spectrum sensing scheme uses received signals to detect
channel states, and it virtually predicts channel states in the
near future simply by using previous detected channel states.
Our future research involves further extensive empirical
investigations and analytical studies on the proposed approach.
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