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Abstract: The importance of this paper is the use of seasonal time series models (some seasonal models of Box & Jenkins) to predict 
electricity consumption in Sudan National Grid, making it easier to estimate consumption, and provide accurate indicators for planners 
to develop appropriate future plans in electricity sector. The objective of this paper is to forecast the electric load consumption using 
different model. 
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1. INTRODUCTION  

This paper deals with using seasonal time series models to 
study and analyze the monthly consumption data of electricity 
in Sudan national grid for the period (2007 – 2016), whereas 
these models are distinct with high accuracy and flexibility in 
analysis time series. 
During the last decade, the annual peak load in Sudan grew 
steadily at around 13% per year, similar to the growth of 
energy consumption. In 2011, the annual peak load was 1,517 
MW (gross, at generator output), nearly double the peak load 
in 2006 [1]. The load curve of the national grid varies between 
seasons as well as between weekday and weekend. The rapid 
growth in Sudan economy has been accompanied by a 
remarkable increase in energy consumption including 
electricity. 

2. Assumptions 

The study is based on two basic hypotheses: 
1. The monthly electricity consumption in the period 2007 – 

2016 has been unstable and growing at relatively 
increasing rates. 

2. Forecasting the electricity consumption of the national 
grid in Sudan is an essential input for the preparation of 
the estimates of energy consumed, and thus the 
development of strategic plans and programs. 

A. Methodology and tools used 

This study is a combination of the analytical approach in the 
theoretical side and the case study approach in the applied side. 
Therefore, the study has been divided into two parts: the 
theoretical part, in which the theoretical bases of the seasonal 
time series models in terms of the general form, stages of 
model construction, methods of estimation and prediction. On 
the Practical side, an empirical study was conducted on 
realistic data on electricity consumption in the Sudanese 
National Grid to reach a mathematical model for predicting  

 

Electricity Consumption for subsequent periods. The tool used 
in this study is Minitab. 

3. Teoretical part 

A. Seasonal Time Series: Seasonality is difficult to 
determine if it is integrated with the general trend and this 
is a problem that can be avoided by determining the 
seasonality when the data is stable. In other words, the 
general trend in the data means that it is unstable and can 
therefore be converted to stable data using differences. 
Some statistical criteria that are used to describe the 
quality and timeliness of the time series are: 

a. Autocorrelation (AC) 

The coefficient of correlation is defined as a measure of the 
degree of relationship between the values of the variable itself 
at different seasonal intervals. The coefficient of self-
correlation in the case of seasonal time series at offset (s) is 
estimated by the following formula [2]:  

𝜌௦ෝ =
஼௢௩(௓೟,௓೟శೞ)

ඥ୚ୟ୰(௓೟)୚ୟ୰(௓೟శೞ)
=  

∑ (௓೟ି ௓) (௓೟శೞି ௓)೙షೄ
೟సభ

∑ (௓೟ି ௓)
మ೙

೟సభ

                        (1) 

Where: Zt: Time series parameter observation  

b. Partial Autocorrelation (PAC) 

The Partial auto-correlation coefficient is defined as a measure 
of the degree of relationship between the Zt + S and Zt 
observations, with the rest of the other observations Zt + 1... Zt 

+ S-1. 

The Partial auto-correlation Function (PACF) is no less 
important than the Autocorrelation function (ACF). It is also an 
important tool in time series analysis. It is also used to 
diagnose and quantify the model and to examine the suitability 
of the model by random sampling of the prediction errors [2]. 
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B. Seasonal Time Series Models 

Seasonal Autoregressive Model (SAR) 

The mathematical formula of the seasonal auto-regression 
model (p) follows the following [3]. 
Zt = ΦS Z t-S + Φ2S Zt-2S + Λ Λ + ΦPS Zt- PS + at                (2) 

Whereas: 

Zt-is: Values of seasonal time series observations i = 0, 1, 2... P 

S: Seasonal period length 

Φis: Parameters of Seasonal Self-Regression, i= 1, 2, 3 ...p 

p: The degree of the seasonal model 

at: Random error, where: at ~ NID (0, σa
2) 

In order to achieve stability, the roots of the equation must be: 

ΦS (Β
ୗ) = 1 - ΦS            Β

ୗ = 0                                           (3) 

Out of the unit circle, that is, in order for the model to be stable 
it must be: -1< ΦS <1 

Where B is the back-shift operator known as: 

   BS Zt = Zt-s              ∀s = 1, 2, Κ Κ                              (4) 

C. Testing Stability of Time Series 

Most applied studies using time series data assume that the 
series is stable or static, whereas most economic time series are 
characterized by instability due to instability of surrounding 
conditions. Through time series propagation, Auto-correlation 
function (ACF) and Partial Auto-correlation function (PACF) 
are used to determine the stability or non-stability of the series. 
The instability is due to one of the following reasons [4]: 

- The existence of a general trend.  

- The existence of seasonal fluctuations. 

- Instability of variance and the arithmetic mean. 

a) If variance is inconsistent: 

One of the most important conversions used to fix string 
variation is to obtain the natural logarithm of string data, or to 
obtain its square root or inverted data. 

b) In case of general trend: 

One of the methods used to get rid of the general trend is the 
following: 

a. Linear regression method in estimating the general trend and 
then isolating it and dealing with the residuals as a stable time 
series and calling this global de-trending. 

b. The method of variance: This method requires subtracting 
the values of the views from each other for certain periods of 
delay, such as the first degree differences take shape: 

yt =∇Zt = Zt – Zt-1                                                                  (5) 

The second-order differences take the following form: 

yt = ∇2Zt = ∇Zt - ∇Zt-1   

    = Zt – 2Zt-1 + Zt-2 = (1 – B)2 Zt                                          (6) 

 

D. Elimination of Seasonal Fluctuations (Seasonal 
Elimination) 

To strip the time series of the seasonal element, the seasonal 
difference is used by subtracting the values from each other 
according to the deceleration intervals consistent with the data 
type [4]: 

Quarterly differences yt = Zt - Zt-4 

Monthly differences yt = Zt - Zt-12 

E. Stages of Building Seasonal Model 

a) Identification 

After achieving the stability in the seasonal time series, the 
process of determining the appropriate model for the 
representation and grade of the series begins with the use of the 
Auto-correlation Function (ACF) and the Partial Auto-
correlation Function (PACF). This method is based on the 
accuracy of the ACF and PACF graphs. The Auto-correlation 
coefficients of the seasonal time series are correlated with the 
theoretical behavior of the Auto-correlations and the Partial 
Auto-correlation shown in Table 1 [5]. 

Table1. The Nature of the Model, According to Auto-
Correlation Curve. 

Model Auto-correlation 
Function (ACF) 

Partial Auto-
correlation Function 

(PACF) 
SAR(PS)  

 
The behavior of the 
sinusoidal function 
gradually disappears. 
(Decays 
Exponentially) 

Displacement after 
seasonal displacement 
(Cuts - off) 

SMA(QS) Cut Off After 
Seasonal Offset Ps 
(Cuts - off) 
 

The behavior of the 
sinusoidal function 
gradually disappears. 
(Decays Exponentially) 

SARMA 
(PS,QS) 

The behavior of the 
sinusoidal function 
gradually disappears. 
(Decays 
Exponentially) 

The behavior of the 
sinusoidal function 
gradually disappears. 
(Decays Exponentially) 
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Table 2. Monthly Consumption of Electricity in Sudan Electric 
Network for the Perio4d (2007-2016) 

Source: National Control Center - Sudan Electricity Holding 
Company – Sudan 

b) Estimation 

After determining the appropriate model, its parameters are 
estimated using one of the complete or approximate estimation 
methods which differ according to the model used [6]. 

1. Exact Maximum Likelihood Method (EML) 

2. Exact Linear Least Square Method (EML) 

c) Diagnostic Checking of Model 

After estimating the model, the suitability or validity of the 
model must be chosen to represent the time series data. There 
are two methods [7]: 

1. The coefficients of the model must have a statistical 
significance, which is significantly different from 
zero. 

2. Residual analysis. 

d) Forecasting 

After determining the appropriate model through the stages of 
diagnosis and estimation and checking the suitability of the 
model is used in the prediction of future values to (L = 1,2,3, 
........) the next period by taking the conditional expectation at 
time (t) to obtain the predictions  Zt(L)  =  Zt+L with the mean 
of the least predictive error boxes. Using the Equations 
Formation formula that contains current and previous values of 
Zt and current and prior error values (at), predictions of the 
seasonal mixed model can be calculated as follows [8]. 

Zt+L= Z୲
෡ (L) = Φୱ

෢Zt+L-S + Φଶୱ
෢ Zt+L-2S + Λ Λ + Φ୮ୱ

෢ Zt+L-ps + at+L - 

Θୱ
෢ at+L-S - Θଶୱ ෢ at+L-2S - Λ Λ - Θ୕ୱ

෢  at+L-QS                               (7) 

Whereas: 

at+L= E(at+L) ; Zt+L = E(Zt+L) 

4. Application side 

A. Data description: 

The data used in this study consists of a monthly time series of 
(120) observations representing the actual monthly 
consumption of electricity of the national grid in Sudan (2007-
2016), estimated in megawatts / hour and for all consumption 
categories (domestic, commercial, governmental, street 
lighting and exemptions. ...), which was taken from the data of 
the National Control Center in Sudan as in Table (2), which 
extends from January 2007 to December 2016 with an average 
of 767,256 MWh and a minimum value of 268,497 MWh 
recorded in 2007 and a maximum value (1,508,948 MWh) 
recorded in 2016. The values of this series differ from their 
average by a standard deviation of (303,923), which gives us 
an idea about the degree of heterogeneity of time series data. 
 
 
The number of observations is sufficient to assume that the 
chain follows a natural distribution and therefore can be 
diagnosed in the best way. 

B. Time series analysis: 

a) Time series plot: 

Before starting the time series analysis, the time series data in 
Table (2) were plotted for the period (2007-2011) as shown in 
Figure (1) to identify their initial characteristics and compare 
them with subsequent years (2012-2016) to check model’s 

2011 
(MWh) 

2010 
(MWh) 

2009 
(MWh) 

2008 
(MWh) 

2007 
(MWh) 

Year/Month 

490309 479654 391701 332738 268497 Jan 
520535 463947 390535 317925 301442 Feb 
623539 558725 434160 421436 330160 Mar 
669266 610642 516328 445001 397480 Apr 
777633 699868 552411 477253 446766 May 
797548 714008 585991 478047 448096 Jun 
820555 678652 577390 483756 424302 Jul 
822249 712271 608554 462738 400722 Aug 
781245 688252 617997 494436 443469 Sep 
820512 734517 615127 495484 480949 Oct 
595959 629108 502695 432224 411426 Nov 
606691 554417 445027 399819 360030 Dec 

2016 2015 2014 2013 2012 Year/Month 

827744 773410 721508 661474 554040 Jan 
899749 854338 723839 677683 636172 Feb 

1244781 1088588 948699 836353 718562 Mar 
1283687 1051643 1052259 863355 804893 Apr 
1502717 1275702 1114447 989966 910595 May 
1508948 1324738 1143844 993690 885303 Jun 
1337975 1374284 1137746 1077013 884565 Jul 
1322497 1258756 1049190 877253 838904 Aug 
1327419 1213092 1067424 968625 860936 Sep 
1435543 1317262 1043222 945520 856344 Oct 
1229523 1031549 908365 822424 741575 Nov 
1090542 845627 883839 740782 668038 Dec 
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1090542 845627 883839 740782 668038 Dec 
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validity. 

Year
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Fig.1. Monthly Consumption Curve of Electric Power for the 
Period 2007-2011 

It is noticeable from figure 1 that there is an increasing general 
trend with time as well as the presence of oscillations 
represented in the spines and spikes and these fluctuations are 
repeated regularly and at the same pace each year with 
different frequency of increasing from yearly. 

b) Time series stability test: 

For the purpose of obtaining stability, the series is drawn as in 
figure (1). It is clear that the chain is unstable. 

c) Remove the Chain instability: 

1. Elimination of General Trend: 
In order to remove the general trend, the differences were taken 
from the first order and we obtained the modified series where: 
∇Zt = Zt – Zt-1  

Year
Month
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Fig.2. the Observations after Taking the First Differences for 

the Years 2007-2011 

Figure 2 shows the curve of the modified time series after 
taking the first difference. From the observation of the shape, it 
is found that the curve is parallel to the axis of the joints, which 
indicates the absence of the general trend in the chain with the 
survival of the seasonal movement, that is, the series is 
unstable and this is confirmed by the statistics of Box and 
Jenkins. 

2. Elimination of Seasonal Trend: 

Considering the values of the Auto-correlations of the modified 
time series after taking the first difference shown in Figure 2 
indicating that the time series is seasonal, i.e., it repeats itself 
every 12 months. Therefore, for the purpose of elimination of 

seasonality, differences were taken from class 12. We obtained 
the modified series where: 

∇∇12 Zt = Zt-1 – Zt-12 

From the observation of these forms, it is found that the 
stability has been achieved somewhat, and in Figure (2) it is 
found that there is a general trend in the data and to confirm 
that and in order to know the nature of the series were extracted 
the intrinsic and partial correlation coefficients, as in Figure 
(3),(4). 
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 Fig.3. Auto-Correlation after taking the first Differences 
(2007-2011) 
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 Fig.4. Partial Auto-Correlation after Taking the First 
Differences (2007-2011) 

Which shows that the coefficients of the Auto-correlation 
function differs significantly from zero. 

A. Identification: 

The identification of the model by the rank of models AR and 
MA, depending on the form of the (conelogramme), and when 
matching the values of the coefficients of Auto-correlation and 
the Partial Auto-correlation of the time series after taking the 
first and seasonal differences as in Figures (3) (4) with the 
theoretical behavior shown in Table (1), it is clear that the 
Auto-correlation (ACF) and PACF of the sample decreases 
gradually with the increase of the displacement periods (k) and 
the result that the model is the double seasonal model of class: 

SARIMA (1 , 1 , 1)x(1 , 1 , 1)12 

or  
(1 – ø1B)(1 – B)(1 – B12)Zt = (1 – θ1B)(1 – Θ1B

12)at            (8) 

B. Forecasting: 

Using ARIMA forecasting model, the monthly consumption 
quantities of the electric power for the years 2012-2016 were 
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predicted. The results are presented in Table 3 and the time 
series of these predictions are drawn. It is clear that the series 
for the forecasted period follows the same behavior as the 
original series. 
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Fig.5. Auto-Correlations of the Forecasted Values 2012-2016 
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Fig.6. Partial Correlations of Forecasted Values for Years 

2012-2016 

 
Fig.7. Forecasted Values for Years 2012-2016 

5. Electricity Load Forecast of Sudan National Grid for 
period 2017 to 2066 

A. Plot time series: 
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Fig.8. Monthly Consumption Curve of Electric Power for the 

Period from 2007 to 2016 

B. Time series stability test: 
In order to obtain stability in variance, the data were treated by 
taking the differences. 

 Elimination of Chain Instability: 

a) Elimination of the general trend: 

In order to remove the general trend, the differences were taken 
from the first order and we obtained the modified series where: 

∇Zt = Zt – Zt-1 
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 Fig.9. Observations after Taking the First Differences for the 
Years 2007 – 2016 
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 Fig.10. Auto-Correlation after Taking the First Differences 
(2007 - 2016) 
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 Fig.11. Partial Correlation after taking the first Differences 
(2007 - 2016) 

b) Elimination of Seasonal Component: 
Note the values of the Auto-correlations of the modified time 
series after taking the first difference shown in Figure 9 
indicating that the time series is seasonal, i.e., it repeats itself 
every 12 months. Therefore, for the purpose of elimination of 
seasonality, differences were taken from class 12. We obtained 
the modified series where: 

∇∇12 Zt = Zt-1 – Zt-12 
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Fig.12. Observations after  taking the 12th Difference for the 

years 2007 - 2016 

From the observation of these figures, it is found that the 
stability has been achieved somewhat. Figure 12 shows that 
there is a general trend in the data. 
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Fig.13. Auto-Correlation after Taking the 12th Difference 
(2007 - 2016) 
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Fig.14. Partial Correlation after Taking the Difference 12 
(2007 - 2016) 

C. Forecasting: 
Using the ARIMA forecasting model, the monthly 
consumption quantities of the electric power of the year (2017-
2066) were forecasted. The results are presented in Table 3. It 
is obvious that the series for the forecasted period follows the 
same behavior as the original series. 

 

Fig.15. Forecasted Values for the Years 2017-2066 

Table 3: Forecasted load Values for Period 2017 to 2066 

 Forecast 
(MWh) 

Lower (MWh) Upper (MWh) 

2017 15,934,992 13,296,378 18,573,605 

2018 17,304,589 14,524,404 20,084,775 

2019 18,856,775 15,882,355 21,831,196 

2020 19,866,898 16,590,230 23,143,567 

2021 21,041,685 17,494,417 24,588,953 

2022 22,421,784 18,575,791 26,267,777 

2023 23,788,588 19,617,471 27,959,705 

2024 24,934,924 20,430,433 29,439,416 

2025 26,094,149 21,187,615 31,000,682 

2026 27,473,479 22,184,098 32,762,860 

2027 28,853,003 23,155,918 34,550,088 

2028 29,989,994 23,874,147 36,105,841 

2029 31,150,286 24,560,749 37,739,823 

2030 32,529,669 25,484,818 39,574,521 
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2031 33,908,320 26,387,554 41,429,086 

2032 35,045,953 27,041,743 43,050,163 

2033 36,206,172 27,668,905 44,743,438 

2034 37,585,551 28,533,765 46,637,337 

2035 38,964,262 29,379,959 48,548,564 

2036 40,101,851 29,979,191 50,224,510 

2037 41,262,074 30,555,745 51,968,404 

2038 42,641,454 31,369,348 53,913,560 

2039 44,020,161 32,166,087 55,874,235 

2040 45,157,753 32,716,916 57,598,589 

2041 46,317,976 33,248,397 59,387,555 

2042 47,697,356 34,016,122 61,378,590 

2043 49,076,063 34,768,304 63,383,821 

2044 50,213,654 35,275,261 65,152,048 

2045 51,373,878 35,765,556 66,982,200 

2046 52,753,258 36,491,283 69,015,232 

2047 54,131,965 37,202,491 71,061,438 

2048 55,269,556 37,668,948 72,870,165 

2049 56,429,779 38,120,969 74,738,590 

2050 57,809,159 38,807,663 76,810,656 

2051 59,187,866 39,480,660 78,895,073 

2052 60,325,458 39,909,252 80,741,664 

2053 61,485,681 40,325,294 82,646,068 

2054 62,865,061 40,975,315 84,754,807 

2055 64,243,768 41,612,321 86,875,215 

2056 65,381,359 42,005,189 88,757,530 

2057 66,541,583 42,387,128 90,696,037 

2058 67,920,963 43,002,421 92,839,505 

2059 69,299,670 43,605,277 94,994,063 

2060 70,437,261 43,964,206 96,910,317 

2061 71,597,485 44,313,621 98,881,348 

2062 72,976,864 44,895,826 101,057,903 

2063 74,355,572 45,466,094 103,245,049 

2064 75,493,163 45,792,606 105,193,720 

2065 76,653,386 46,110,855 107,195,917 

2066 78,032,766 46,661,384 109,404,148 
 
Table 4. Annual Loads (normal) Forecast for Period 2017 to 
2066 

Year Energy Demand 
Forecast (MWh) 

Growth % 

 

2017 15,934,992 6.20 

2018 17,304,589 8.60 

2019 18,856,775 8.70 

2020 19,866,898 5.30 

2021 21,041,685 5.90 

2022 22,421,784 6.60 

2023 23,788,588 6.10 

2024 24,934,924 4.80 

2025 26,094,149 4.60 

2026 27,473,479 5.30 

2027 28,853,003 5.00 

2028 29,989,994 3.90 

2029 31,150,286 3.90 

2030 32,529,669 4.40 

2031 33,908,320 4.20 

2032 35,045,953 3.40 

2033 36,206,172 3.30 

2034 37,585,551 3.80 

2035 38,964,262 3.70 

2036 40,101,851 2.90 

2037 41,262,074 2.90 

2038 42,641,454 3.30 

2039 44,020,161 3.20 

2040 45,157,753 2.60 

2041 46,317,976 2.60 

2042 47,697,356 3.00 

2043 49,076,063 2.90 

2044 50,213,654 2.30 

2045 51,373,878 2.30 

2046 52,753,258 2.70 

2047 54,131,965 2.60 

2048 55,269,556 2.10 

2049 56,429,779 2.10 

2050 57,809,159 2.40 

2051 59,187,866 2.40 

2052 60,325,458 1.90 

2053 61,485,681 1.90 

2054 62,865,061 2.20 

2055 64,243,768 2.20 

2056 65,381,359 1.80 

2057 66,541,583 1.80 

2058 67,920,963 2.10 

2059 69,299,670 2.00 

2060 70,437,261 1.60 

2061 71,597,485 1.60 

2062 72,976,864 1.90 

2063 74,355,572 1.90 

2064 75,493,163 1.50 

2065 76,653,386 1.50 

2066 78,032,766 1.80 
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Fig.16. Forecasted values for the years 2017-2066 

6. Load Forecast Comparison between Lahmeyer study 
and Actual Load Consumption for Period 2012 – 
2016 

In 2011, the Ministry of Electricity and Dams (MED) has 
contracted Lahmeyer International (LI) for the consultancy 
services for the development of: 
1. A long term power system planning study to cover the 
period 2012-2031; and 

2. A medium term plan for the period 2012 – 2016. 

The following results were obtained for load forecast for the 
period 2012 – 2031. 

 

Fig.17. Peak load – Moderate, base and high Scenario (2006 - 
2031) 

For the base scenario, demand for energy and peak load are 
forecasted to grow by an average annual rate of 12.5% for the 
period until 2021, 4.5% for the period 2021 to 2031 and 8.4% 
for the whole study period. 

Table 5. A comparison between Lahmeyer Load Forecast and 
Actual Load Consumption for Period 2012- 2016 

Year Lahmeyer 
Forecast 
(GWh) 

Growt
h % 

Actual 
consumption 

(GWh) 

Growt
h % 

2012 9,742 20 9,360 12.0 

2013 11,241 15 10,454 11.7 

2014 12,819 14 11,794 12.8 

2015 14,662 14 13,409 13.7 

2016 16,262 11 15,011 11.9 

 

 

Fig.18. A comparison between Lahmeyer Load Forecast and 
Actual Load Consumption for Period 2012- 2016 

By comparing forecasted load consumption by Lahmeyer and 
actual load consumption in Table 7and Figure 18, it is clear 
that there is over estimation in Lahmeyer study. Table 8 shows 
the error percentage between Lahmeyer load forecast and 
actual load consumption for period 2012 - 2016. 

Table 6. Deviation Percentage between Lehmeyer Load 
Forecast Study and Actual Load Consumption for Period 2012 
- 2016 

Year Lahmeyer 
Forecast 
(GWh) 

Actual 
consumption 

(GWh) 

Error 
% 

2012 9,742 9,360 4.1 

2013 11,241 10,454 7.5 

2014 12,819 11,794 8.7 

2015 14,662 13,409 9.3 

2016 16,262 15,011 8.3 

7. Load Forecast Comparison between Lahmeyer Study 
and The Paper Load Forecast for Period 2017 – 2031 

Table 7 shows the comparison between Lahmeyer load 
forecast and load forecast done in this paper. 

Table 7. A comparison between Lahmeyer Load Forecast and 
Load Forecast of This Paper for Period 2017- 2031 

Year Lahmeyer 
Forecast 
(GWh) 

Growt
h % 

Research 
Forecast (GWh) 

Growt
h  %  

2017 19,808 22 15,935 6.2 

2018 21,333 8 17,305 8.6 

2019 22,957 7 18,857 8.7 

2020 24,496 6 19,867 5.3 

2021 26,066 6 21,042 5.9 
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2022 27,592 5 22,422 6.6 

2023 29,104 5 23,789 6.1 

2024 30,555 4 24,935 4.8 

2025 31,995 5 26,094 4.6 

2026 33,448 5 27,473 5.3 

2027 34,929 4 28,853 5 

2028 36,405 4 29,990 3.9 

2029 37,902 4 31,150 3.9 

2030 39,431 4 32,530 4.4 

2031 40,990 4 33,908 4.2 

          

 

Fig.19. A comparison Between Lahmeyer Load Forecast 
and Load Forecast of This Paper for Period 2017- 2031 

Load forecast values which obtained in this paper took in 
consideration actual values for load consumption for period up 
to 2016; meanwhile Lahmeyer study applied actual load 
consumption values up to 2011. This indicates that load 
forecast values obtained in this paper are much reliable and 
reasonable. 

8. Actual Load Consumption versus Load Forecasts in 
2017 

In comparing the actual load consumption in Sudan grid for 
2017 between Lahmeyer study and this study forecast are 
shown in the following table 8. 

Table 8. A Comparisons between Actual Load Forecast for 
2017 

Actual Generation + Interchange 2017 16,138,009 MWh 
This Study Load Forecast for 2017 15,934,992 MWh 
Lahmeyer Load Forecast Study for 
2017 

19,808,000 MWh 

 
Table 9 shows that the deviation between actual load 
consumption, Lahmeyer load forecast and this study load 
forecast. This comparison indicates that the deviation for this 
study in only 1.26%, while for Lahmeyer Load forecast is 
22.74%. 

Table 9. Deviation from Actual Load Consumption, Lahmeyer 
Load Forecast Study, and This Study Load  Forecast for 2017 

 Deviation from Actual Energy in 2017 
Lahmeyer Study 22.74% (plus) 
This Study 1.26% (minus) 

 CONCLUSION 

From the above, the following conclusions can be summarized: 
1. Electrical load forecasting is an important process that 
enables utilities to understand the future load demand, which 
has important roles in guiding plans, programs and policies. A 
good forecast leads to better planning and rational policy in 
term of energy production. 
2. In the absence of causal relationships between variables or 
insufficient information about explanatory variables, the time 
series method is more accurate in forecasting process. 
3. The reslts obtained for load forecast in this study is accurate 
an dclose to the actual load as in 2017. However this load 
forecast study should be updated frequently using most recent 
load consumption to obtain much accurate results. 
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