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Abstract: Equal weighting is a general strategy in the least squares solutions to reflect the equal contribution of observations that were 

obtained, for example, by identical measurement systems or similar measurement procedures or algorithms. This type of weighting can be 

imposed either implicitly or explicitly. Implicit weighting takes the form of an identity weight matrix while explicit weighting is imposed by 

a weight matrix of equal and known variance value of the observations. Through theoretical and numerical demonstrations, this paper shows 

that equal weights do not affect the estimated parameters and the residuals in the least squares solution. Moreover, for a relatively large set of 

observations, the estimated variance component converges to the variance of the original observations in the case of the implicit weighting; 

and it converges to a value that is very close to one in the case of explicit weighting. In addition, the posterior variance-covariance or 

dispersion matrices in the implicit and explicit cases are very close to each other after the adjustment. In this study, Monte Carlo simulation 

was used to generate numerical values of random noise from a normal distribution. This random noise was added to the coordinates of a 

straight-line for practical evaluation of the proposed arguments.  
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1.  INTRODUCTION  

Least squares solution is a fundamental approach and tool for 

parameters estimation in geomatics [1] and other fields [2]. 

Weighted observations in terms of their variances are typically used 

to reflect the quality of different measurement technologies as well 

as different measurement procedures. On the other hand, equal 

weighting is a general strategy in the least squares solutions to 

reflect the equal contribution of observations that were obtained, for 

example, by an identical measurement's system or similar 

measurement procedures such as image matching and feature 

extraction in digital photogrammetry [3]. It is important to state that 

equal weighting can be obtained by transformation in terms of 

Cholesky factorization [4] in which the weight matrix and 

observations will be transformed into uncorrelated measurements 

and have equal variances. These form of observations are called 

homoscedastic observations. 

In this paper we are addressing the observations in their original 

form and without any type of transformation and the concept of 

equal weighting will be imposed in two different ways. In 

particular, equal weighting will be imposed either implicitly or 

explicitly in the target function of the least squares minimization. 

Implicit weighting takes the form of an identity weight matrix while 

explicit weighting is imposed by a weight matrix of equal and 

known variance value of the observations. 

Although equal weighting strategy of the observations is a well-

known practice in geomatics and surveying [5], it was not treated 

with the depth that will be provided in this paper. Monte Carlo 

simulation will be used in this research to add the random noise to 

the observations. In general, Monte Carlo simulation refers to any 

simulation that encompasses the use of random numbers [6 and 7]. 

Monte Carlo simulation is an easy and inexpensive approach to 

generate and develop control experiments in the broad context of 

statistical modeling. In particular, it will enable us to develop a 

detailed understanding of the effects of randomness in the forward 

and backward mode of the solution. In other words, we will be able 

to conduct a detailed process of reverse engineering on different 

aspects of the effects of randomness within the framework of 

statistical modeling. In particular and in the context of this paper, 

the forward solution refers to the addition of known random noise 

to the observations; and the backward solution refers to the least 

squares modeling to recover or retrieve the added noise to the 

observations in terms of prediction and to estimate the parameters 

of the functional model that expresses the relationship between the 

inputs and outputs.  

To conduct a Monte Carlo-based experiment, we need a statistical 

model to represent the assumed population, a set of statistical 

parameters of the particular experiment, and a way to generate the 

random numbers using a computer.  

This paper is organized as follows. Section two presents the 

mathematical proof and the methodology. Section three presents the 

inputs of four test cases that will be used to evaluate the specific 

aspect of equal weight on the derived parameters from the least 
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squares solution. Section four provides the results and analysis for 

the test cases outlined in section three. Section five concludes the 

paper with some recommendations. 

2. Mathematical Proofs and Methodology 

The mathematical proof of this work will be based on Gauss-

Markov Model (GMM), which can be stated as follows: 

          𝑌 = 𝐴𝜉 + 𝑒                                                       (1.a) 

If we neglect the e vector in equation (1.a), then the GMM can be 

approximated as follows: 

       𝑌 ≅ 𝐴𝜉                                                              (1.b) 

The approximation in equation (1.b) reflects the inconsistency 

between the two sides of the equation; and this is due to the 

randomness in the observations. A major assumption was made that 

the functional model on the right hand side of equation (1.b) is an 

ideal representation of the observations or measurements of the left 

hand side in the absence of the randomness shown in equation (1.a). 

Where: 

Y: is the vector of observations. 

A: Design matrix. 

𝜉: Vector of unknown parameters. 

𝑒: Vector of true random errors. 

GMM expresses a linear relationship between the observations and 

the unknown parameters of the model under investigation, which 

generally follows after a linearization of physical, mathematical, or 

a geometrical relationship. 

𝐸(𝐴𝜉) = 𝐸(𝑌)                                                  (2) 

𝐷(𝑌) = 𝐷(𝑒) = 𝜎𝑜
2𝑃−1                                   (3.a) 

𝐸(𝑒) = 0                                                          (3.b) 

Where: 

E: Expectation operator. 

D: Dispersion operator, which can also be called the variance-

covariance matrix of the      observations. 

𝜎𝑜
2: Variance of unit weight. 

P: Weight matrix of uncorrelated observations, which can also be 

written as follows for uncorrelated observations: 

𝑃 = (

1

𝜎2 … 0

⋮ ⋱ ⋮

0 …
1

𝜎2

) =
1

𝜎2 (
1 … 0
⋮ ⋱ ⋮
0 … 1

)                  (4) 

Where: 

𝜎2: Given variance of the observations. 

Equation (3.a) represents the explicit case of imposing the strategy 

of equal weighting in which the weight matrix will be constructed 

from a direct knowledge of the variance that will be associated with 

the given direct observations such as the coordinates of a straight-

line. On the other hand, the implicit weighting will be imposed by 

the implicit knowledge of equal weighting using the following 

simple equation of the variance dispersion: 

𝐷(𝑌) = 𝐷(𝑒) = 𝜎𝑜
2𝐼𝑛 𝑥 𝑛                                      (5) 

Where: 

I: is an n x n identity matrix. 

According to equations (3.a and 5), the target functions for the 

explicit and implicit least squares solutions are as follows: 

  𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝐶𝑎𝑠𝑒:     𝑒𝑇𝑃𝑒 + 2𝜆𝑇(𝑌 − 𝐴𝜉 − 𝑒) = 𝑚𝑖𝑛𝜆,𝑒,𝜉     (6) 

  𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝐶𝑎𝑠𝑒:  𝑒𝑇𝐼𝑛 𝑥 𝑛𝑒 + 2𝜆𝑇(𝑌 − 𝐴𝜉 − 𝑒) = 𝑚𝑖𝑛𝜆,𝑒,𝜉  (7) 

Where: 

𝜆: Lagrange’s multiplier. 

The Lagrange’s multiplier provides a very elegant mechanism to 

solve constrained equations [8, 9, 10, 11, and 12] as the ones shown 

in equations (6 and 7). It should be noted that the only difference 

between equations (6 and 7) is the appearance and disappearance of 

the weight matrix P. 

The solution vector for the unknown parameters (𝜉) of the implicit 

case shown in equation 7, in which the weight matrix is the identity 

matrix I, is: 

 𝜉 = (𝐴𝑇𝐼𝐴)−1𝐴𝑇𝐼𝑌 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌                     (8.a) 

 Equation (8.a) can be manipulated as follows: 

 𝐴𝑇(𝑌 − 𝐴𝜉) = 𝐴𝑇(𝑌 − 𝑌̂) = 𝐴𝑇𝑒̃ = 0                          (8.b) 

Where: 

𝑒̃: is the residuals vector, which will be restated in equation (11) 

𝑌̂:  are the estimated and consistent observations vector. 

Equation (8.b) reveals two key facts: 

• The least squares solution transforms the inconsistent set of 

linear equations shown in (1.b) to consistent equations by 

replacing Y by 𝑌̂. 

• The residuals vector is orthogonal to the column space of the 

design matrix A. In other words, these two entities (𝑒̃ and A) 

are not correlated and the least squares solution has the ability 

to predict the implicit or hidden randomness or residuals in 

the observations. This is equally true in this work for the 

implicit and explicit weighting strategy since the residuals are 

independent of the weighting scheme.  Moreover, a unique 

solution for the residuals will be obtained if the design matrix 

A has a full rank. This fact is very critical since it provides the 

basis to approximate the unknown variance of equally 

weighted observations with a quadratic or squared term of the 

predicted residuals. 

The solution vector for the unknown parameters (𝜉) of the explicit 

case shown in equation 6, in which the weight matrix is P: 
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            𝜉 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑌                                                      (9) 

As shown in equation 4, the information content of the P matrix is a 

diagonal matrix with equal weight, which can be extracted as 

common value and the P matrix will be reduced to the identity 

matrix as follows: 

 𝜉 = (𝜎2)(𝐴𝑇𝐼𝐴)−1 (
1

𝜎2) 𝐴𝑇𝐼𝑌 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌       (10) 

It is very evident that the variance will be cancelled out in equation 

(10) and this equation will be reduced to the same form of equation 

(8.a). Therefore, regardless of the implicit or explicit form of the 

least squares solution, the weight matrix does not has any impact on 

the estimated parameters (𝜉). 

The residuals will be computed as follows: 

         𝑒̃ = 𝑌 − 𝐴𝜉                                                         (11) 

In light of equations (8.a and 10), the predicted residuals do not 

depend on the weight matrix. 

The estimated variance of unit weight, which is also called the 

variance component or the reference variance will be computed as 

follows for the explicit case: 

     𝜎̂𝑜
2 =

𝑒̃𝑇𝑃𝑒̃

𝑟
= (

1

𝜎2) 𝑥 (
1

𝑟
)(∑ 𝑒̃𝑖

2)𝑖=𝑛
𝑖=1                            (12) 

 Where:  

 𝜎̂𝑜
2: Estimated variance of unit weight or variance component after 

the adjustment process. 

r: redundancy number, which is the difference between the number 

of equations and the number of unknowns. 

It should be noted that the weight matrix (P) in equation (12) is 

replaced by the multiplication of the identity matrix and the inverse 

of the given variance of the observations. By doing this 

factorization of the weight matrix, we are preparing the ground for 

further simplification of equation (12).  

In light of the analysis shown for equation (8.b), the square values 

of the residuals shown in equation (12) can be written and 

approximated as a summation of equal variance as follows: 

      ∑ 𝑒̃𝑖
2 ≈ ∑ (𝑒̃1

2 + 𝑒̃2
2𝑖=𝑛

𝑖=1 + ⋯ + 𝑒̃𝑛
2) ≈ ∑ (𝜎2 + 𝜎2𝑖=𝑛

𝑖=1 +𝑖=𝑛
𝑖=1

⋯ + 𝜎2)  ≅ 𝑛𝜎2                                                         (13) 

Now, we need to plug or insert the approximation shown in 

equation (13) into equation (12): 

      𝜎̂𝑜
2 =

𝑒̃𝑇𝑃𝑒̃

𝑟
= (

1

𝜎2) 𝑥 (
1

𝑟
)(∑ 𝑒̃𝑖

2) ≅ (
1

𝜎2) (𝑖=𝑛
𝑖=1

𝑛𝜎2

𝑟
)   (14) 

For a relatively large number of observations we get: 

    𝑟 ≅ 𝑛                                                                    (15) 

In light of equations (13) and (15), equation (12) can be 

approximated by the following new equation: 

 

 𝜎̂𝑜
2 =

𝑒̃𝑇𝑃𝑒̃

𝑟
= (

1

𝜎2
) 𝑥 (

1

𝑟
) ((∑ 𝑒̃𝑖

2) ≅ (
1

𝜎2
) (

𝑖=𝑛

𝑖=1

𝑛𝜎2

𝑟
)) ≅ 1(16) 

The dispersion matrix for the explicit case after the plugging of the 

estimated variance component shown in equation (16) can be 

written as follows: 

  𝐷〈𝜉〉̂̂ = 𝜎̂𝑜
2(𝐴𝑇𝑃𝐴)−1 = 𝜎̂𝑜

2 𝑥 𝜎2(𝐴𝑇𝐼𝐴)−1 ≅

1 𝑥 𝜎2(𝐴𝑇𝐼𝐴)−1 ≅ 𝜎2(𝐴𝑇𝐼𝐴)−1                                (17) 

By using the approximate results shown in equations (13) and (15), 

we will get the following results for the variance component and the 

dispersion matrix for the implicit case: 

    𝜎̂𝑜
2 =

𝑒̃𝑇𝐼𝑛 𝑥 𝑛𝑒̃

𝑟
=  (

1

𝑟
) (∑ 𝑒̃𝑖

2 ≅ (𝑖=𝑛
𝑖=1

𝑛𝜎2

𝑟
)) ≅ 𝜎2      (18) 

Equation (18) can be used to estimate a good approximation for the 

unknown variance of the observations. The dispersion matrix for 

the implicit case can be written as follows: 

      𝐷〈𝜉〉̂̂ = 𝜎̂𝑜
2(𝐴𝑇𝐼𝐴)−1 ≅ 𝜎2(𝐴𝑇𝐼𝐴)−1                    (19) 

It is very important to note that equations (17) and (19) converged 

to a similar approximate solution for the dispersion matrix after the 

adjustment for the explicit and implicit cases. In other words, this 

similarity is only available after the multiplication with the 

estimated variance component values.  In the explicit case, the 

effect of the estimated variance component is very minor or 

negligible and this is due to the multiplication by its value that is 

closer to one. On the other hand and for the implicit case shown in 

equation (19), the estimated variance component approximately 

imposed the unknown variance of the observations on the 

dispersion or variance-covariance matrix. Equations (17) and (19) 

show a very interesting interplay on how the notion of equal 

weights impacted the dispersion matrix after the estimation of the 

variance component.   

The methodology for evaluating this research work will be based on 

the following steps: 

• As stated before, the equation of the straight-line will be 

used to test the formulation and the theoretical insights of 

equal weight. Therefore, the first step will be to generate a 

set of points that belongs to a straight-line. The following 

equation will be used for the straight-line representation: 

         𝑦 = 𝑚𝑥 + 𝑐                                                      (20) 

x, y: 2D coordinates of the straight-line. 

m: slope. 

c: y-intercept  

• Generate a set of random noise that belongs to the normal 

distribution. In particular, a random noise with a zero mean 

and a specific standard deviation value will be generated. 

• Add the random noise to the coordinates of the straight-line. 

In fact, two situations of random noise will be tested in this 

paper. The first situation is concerned with the addition of 

random noise to the y-coordinates; and in the second one to 

both sets of the coordinates.   
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• Use the presented set of equations to evaluate the effects of 

equal weight. As stated, in this work we distinguished 

between explicit and implicit weighting. In the explicit case 

the weight matrix of equal and known variance was used 

directly in the formulation of the least squares solution as 

shown in equation (6). On the other hand, in the implicit 

case the weight matrix used the generic or the believed 

assumption of equal variance in the form of identity matrix 

in the formulation of the least squares solution as shown in 

equation (7). In other words, there is no knowledge of the 

actual value of the variance of the observations and the 

proposed work can be used to estimate a good 

approximation for its value. 

3. Test Cases 

As shown in Table 1, four test cases will be used to demonstrate the 

effects of equal weights on the derived parameters from the least 

squares solution. Each case will be specified by four parameters, 

namely, a case number, a standard deviation, number of points, and 

the specification of the corrupted coordinates. Case 1 and 2 share 

the same level of random noise but they differ in the number of 

points. Case number 3 shares the same number of points with case 

number 2 but it differs in the random noise. Case number 4 shares 

the same number of points and random noise with case number 2 

but it differs in the effect of random noise since it impacts the two 

coordinates. The last case is very important since it shows a 

common scenario of least squares solution in which both 

coordinates are random; and the ordinary solution of least squares 

does not capture the full effects or interaction between random 

errors distribution and the derived quantities from least squares 

solution. 

A straight-line with a slope of 1.53986 and an intercept of 50 units 

will be used in all cases shown in Table 1. These two parameters of 

the straight-line will be used to generate ideal measurements for the 

2D coordinates that belong to this line. In other words, the vectors 

basis of the design matrix shown in equation (1.a) truly express the 

functional relationship between the two sides of the equation in the 

absence of the random noise. In direct statement, we are dealing 

with controlled experiments. Fig. 1 shows a plot for an example of 

the coordinates for the straight-line coordinates that will be used for 

testing the proposed work. These coordinates will be corrupted with 

random noise that will be generated from normal distribution. Fig. 2 

shows a histogram for a random noise that was generated from a 

normal distribution with a zero mean and ± 0.05 standard deviation. 

4. Results and Analysis 

Tables 2 and 3 show the results of the first case in which the 

estimated values of the line parameters are identical (see Table 2) in 

the explicit and the implicit cases. In other words, the experimental 

findings confirm the theoretical derivation shown in equations (8.a 

and 10). Moreover, Table 2 shows the estimated values for the 

variance components for the explicit and implicit cases in which the 

value for the explicit case is very close to one (1.03722) and the 

value for the implicit case is very close to ±0.05 (±0.0509). Once 

again, this finding confirms the theoretical proof shown in 

equations (16) and (18). Table 3 shows the two dispersion matrices 

for the explicit and implicit cases and both of them are very close or 

even identical to each other. In other words, the dispersion matrix in 

the explicit and implicit case converge to similar values as predicted 

by equations (17) and (19). Similar empirical and theoretical results 

were obtained for the test cases number 2 and 3 and they were 

shown in Tables 4, 5, 6, and 7. In test case number 4, the random 

noise was added to the two coordinates of the straight-line. Recall 

that this is not the situation for the other three cases shown in Table 

1 in which the random noise was added only to the Y-coordinates. 

As stated, case number 4 uses the same variance and the same 

number of points that were used in test case number 2. Indeed, the 

estimated line parameters are very identical in the explicit and 

implicit cases because they were not sensitive to the appearance or 

disappearance of the weight matrix (see Table 8).  

At no surprise, the developed theory of this research does not 

account for the variances at the explicit and implicit weighting. 

Moreover, it gives very optimistic values for the dispersion matrices 

by one-order of magnitude for the variances of the line parameters 

(see Table 9). 

 
Fig .1. Plot of an example for a straight-line coordinates. 

 
Fig .2.  A histogram of random noise from normal distribution. 

Table 1. Test cases. 

Case 

Number 

Standard 

Deviation 

Number of 

Points 

Corrupted 

Coordinates 

1 ±0.05 500 Y 

2 ±0.05 1000 Y 

3 ±0.07 1000 Y 

4 ±0.05 1000 X & Y 
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Table 2: Results for case number 1. 

Parameter Explicit Case Implicit Case 

𝑚̂ 1.53989 1.53989 

𝑐̂ 49.99636 49.99636 

 𝜎̂𝑜
2 1.03722 

0.00259, STD=± 

0.0509 

Table 3. The two dispersion matrices for case number 1. 

Weighting Type Dispersion Matrix 

Explicit 
2.489e-10     -6.235e-08 

-6.235e-08      2.080e-05 

Implicit 
2.489e-10     -6.235e-08 

-6.235e-08      2.080e-05 

Table 4. Results for case number 2. 

Parameter Explicit Case Implicit Case 

𝑚̂ 1.53986 1.53986 

𝑐̂ 49.99850 49.99850 

 𝜎̂𝑜
2 1.0792 

0.00269, 

STD=±0.0519 

Table 5. The two dispersion matrices for case number 2. 

Weighting Type Dispersion Matrix 

Explicit 
3.237e-11     -1.620e-08 

-1.620e-08      1.080e-05 

Implicit 
3.237e-11     -1.620e-08 

-1.620e-08      1.080e-05 

Table 6. Results for case number 3. 

Parameter Explicit Case Implicit Case 

𝑚̂ 1.53986 1.53986 

𝑐̂ 49.99837 49.99837 

 𝜎̂𝑜
2 0.94093 0.00461 STD=± 

0.0679 

Table 7. The two dispersion matrices for case number 3. 

Weighting Type Dispersion Matrix 

Explicit 
5.532e-11     -2.769e-08 

-2.769e-08      1.846e-05 

Implicit 
5.532e-11     -2.769e-08 

-2.769e-08       1.846e-05 

Table 8. Results for case number 4. 

Parameter Explicit Case Implicit Case 

𝑚̂ 1.53986 1.53986 

𝑐̂ 50.00087 50.00087 

 𝜎̂𝑜
2 0.30156 0.00075 

STD=±0.0274 

Table 9. The two dispersion matrices for case number 4. 

Weighting Type Dispersion Matrix 

Explicit 
9.046e-12     -4.527e-09 

-4.527e-09      3.020e-06 

Implicit 
9.046e-12     -4.527e-09 

-4.527e-09      3.020e-06 

5. Conclusions and Recommendations 

This paper presents a theoretical proof for the effect of equal 

weighting strategy on the derived parameter from a least squares 

solution. We distinguished between the explicit and implicit 

strategies for introducing the weight matrix in the formulation of 

the least squares solution. In the explicit case, the weight matrix 

uses the known variance of the observations along its diagonal. On 

the other hand, the implicit case replaces the unknown variance of 

the observation by an identity matrix for weighting. As shown in 

the sequel of this paper, the distinction between implicit and explicit 

cases of equal weights is irrelevant to the formulation of the target 

function of least squares optimization. In particular, the implicit 

weighting will account for both cases. In other words, the target 

function is unresponsive to the explicit case and intuitively 

compatible with the notion of equal weights. Interestingly enough 

and for a relatively large number of observations, the implicit case 

can be used to estimate a very close approximation for the value of 

the unknown variance of the observations.  

The posterior variance-covariance or the dispersion matrices in the 

implicit and explicit cases are very close to each other. 

Experimental results confirmed the theoretical proof for Gauss-

Markov Model, which is also known as the ordinary least squares 

solution. At no surprise, the developed theory cannot account for 

the correct values for the estimated variance component when the 

random noise affected the two coordinates in the explicit and 

implicit cases. Therefore, further work is required to handle the 

effect of equal weight when the random noise affected both 

coordinates. In general, the presented approach can be used to 

evaluate the accuracy of the measuring instruments in geometrics 

and other fields. 

Monte Carlo simulation provides an elegant and exciting 

mechanism to test the validity of the proposed work in terms of 

supplying unlimited number of test cases with a chosen level of 

uncertainty or random noise. Accordingly, a whole spectrum of 

testing campaign can be carried out for deep understanding and 

analysis for the different functional models within the framework of 

adjustment computations on how they interact with the randomness 

in geomatics and other fields. 
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