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Abstract: Equal weighting is a general strategy in the least squares solutions to reflect the equal contribution of observations that were
obtained, for example, by identical measurement systems or similar measurement procedures or algorithms. This type of weighting can be
imposed either implicitly or explicitly. Implicit weighting takes the form of an identity weight matrix while explicit weighting is imposed by
a weight matrix of equal and known variance value of the observations. Through theoretical and numerical demonstrations, this paper shows
that equal weights do not affect the estimated parameters and the residuals in the least squares solution. Moreover, for a relatively large set of
observations, the estimated variance component converges to the variance of the original observations in the case of the implicit weighting;
and it converges to a value that is very close to one in the case of explicit weighting. In addition, the posterior variance-covariance or
dispersion matrices in the implicit and explicit cases are very close to each other after the adjustment. In this study, Monte Carlo simulation
was used to generate numerical values of random noise from a normal distribution. This random noise was added to the coordinates of a
straight-line for practical evaluation of the proposed arguments.
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1. INTRODUCTION

Least squares solution is a fundamental approach and tool for the observations. In general, Monte Carlo simulation refers to any
parameters estimation in geomatics [1] and other fields [2]. simulation that encompasses the use of random numbers [6 and 7].
Weighted observations in terms of their variances are typically used Monte Carlo simulation is an easy and inexpensive approach to
to reflect the quality of different measurement technologies as well generate and develop control experiments in the broad context of
as different measurement procedures. On the other hand, equal - . . .

weighting is a general strategy in the least squares solutions to statlftlcal modelmg_. In particular, it will enable us_ to develop a
reflect the equal contribution of observations that were obtained, for ~ detailed understanding of the effects of randomness in the forward
example, by an identical measurement's system or similar and backward mode of the solution. In other words, we will be able
measurement procedures such as image matching and feature to conduct a detailed process of reverse engineering on different

extraction in digital photogrammetry [3]. It is important to state that ~ aspects of the effects of randomness within the framework of
equal weighting can be obtained by transformation in terms of  guayigtical modeling. In particular and in the context of this paper,

Cholesky factquzatlon [4] in Wh'Ch the weight matrix and the forward solution refers to the addition of known random noise
observations will be transformed into uncorrelated measurements . .
to the observations; and the backward solution refers to the least

and have equal variances. These form of observations are called ) ) -
homoscedastic observations. squares modeling to recover or retrieve the added noise to the
observations in terms of prediction and to estimate the parameters

In this paper we are addressing the observations in their original . . .
pap g 9 of the functional model that expresses the relationship between the

form and without any type of transformation and the concept of )
equal weighting will be imposed in two different ways. In inputs and outputs.
partl_cglar,_equal weighting .W'” be imposed either ”_“F?“C_'“X or To conduct a Monte Carlo-based experiment, we need a statistical
explicitly in the target function of the least squares minimization.

Implicit weighting takes the form of an identity weight matrix while model to- represent tr_]e assumed_ population, a set of statistical
explicit weighting is imposed by a weight matrix of equal and parameters of the particular experiment, and a way to generate the

known variance value of the observations. random numbers using a computer.

Although equal weighting strategy of the observations is a well- This paper is organized as follows. Section two presents the
known practice in geomatics and surveying [5], it was not treated mathematical proof and the methodology. Section three presents the
with the depth that will be provided in this paper. Monte Carlo inputs of four test cases that will be used to evaluate the specific
simulation will be used in this research to add the random noise to aspect of equal weight on the derived parameters from the least
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squares solution. Section four provides the results and analysis for
the test cases outlined in section three. Section five concludes the
paper with some recommendations.

2. Mathematical Proofs and Methodology

The mathematical proof of this work will be based on Gauss-
Markov Model (GMM), which can be stated as follows:

Y =Aé+e (1.8)

If we neglect the e vector in equation (1.a), then the GMM can be
approximated as follows:

Y = A¢ (1.b)

The approximation in equation (1.b) reflects the inconsistency
between the two sides of the equation; and this is due to the
randomness in the observations. A major assumption was made that
the functional model on the right hand side of equation (1.b) is an
ideal representation of the observations or measurements of the left
hand side in the absence of the randomness shown in equation (1.a).

Where:

Y: is the vector of observations.

A: Design matrix.

&: Vector of unknown parameters.

e: Vector of true random errors.

GMM expresses a linear relationship between the observations and
the unknown parameters of the model under investigation, which

generally follows after a linearization of physical, mathematical, or
a geometrical relationship.

E(A§) = E(Y) 2
D(Y) =D(e) = 2P (3.2)
E(e) =0 (3.b)

Where:

E: Expectation operator.

D: Dispersion operator, which can also be called the variance-
covariance matrix of the  observations.

a2: Variance of unit weight.

P: Weight matrix of uncorrelated observations, which can also be
written as follows for uncorrelated observations:

= - 0 /1.0
p=(: -~ =§<s ) (4)
0o .. = 0 .. 1

Where:
o?: Given variance of the observations.

Equation (3.a) represents the explicit case of imposing the strategy
of equal weighting in which the weight matrix will be constructed
from a direct knowledge of the variance that will be associated with
the given direct observations such as the coordinates of a straight-
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line. On the other hand, the implicit weighting will be imposed by
the implicit knowledge of equal weighting using the following
simple equation of the variance dispersion:

D(Y) =D(e) = 05y xn (®)
Where:
I: is an n x n identity matrix.

According to equations (3.a and 5), the target functions for the
explicit and implicit least squares solutions are as follows:

Explicit Case: e"Pe +2AT(Y — A —e) = miny ¢ (6)
Implicit Case: €T, yye + 227 (Y — AE —e) = miny ¢ (7)
Where:
A: Lagrange’s multiplier.

The Lagrange’s multiplier provides a very elegant mechanism to
solve constrained equations [8, 9, 10, 11, and 12] as the ones shown
in equations (6 and 7). It should be noted that the only difference
between equations (6 and 7) is the appearance and disappearance of
the weight matrix P.

The solution vector for the unknown parameters () of the implicit
case shown in equation 7, in which the weight matrix is the identity
matrix I, is:

E=(ATIA)TIATIY = (ATA)"1ATY (8.a)
Equation (8.2) can be manipulated as follows:
AT(Y —AE) =AT(Y -7)=ATe =0 (8.b)
Where:
é: is the residuals vector, which will be restated in equation (11)
Y: are the estimated and consistent observations vector.
Equation (8.b) reveals two key facts:

e The least squares solution transforms the inconsistent set of
linear equations shown in (1.b) to consistent equations by
replacing Y by .

e The residuals vector is orthogonal to the column space of the
design matrix A. In other words, these two entities (¢ and A)
are not correlated and the least squares solution has the ability
to predict the implicit or hidden randomness or residuals in
the observations. This is equally true in this work for the
implicit and explicit weighting strategy since the residuals are
independent of the weighting scheme. Moreover, a unique
solution for the residuals will be obtained if the design matrix
A has a full rank. This fact is very critical since it provides the
basis to approximate the unknown variance of equally
weighted observations with a quadratic or squared term of the
predicted residuals.

The solution vector for the unknown parameters (&) of the explicit
case shown in equation 6, in which the weight matrix is P:
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&= (ATPA)'ATPY ©)
As shown in equation 4, the information content of the P matrix is a
diagonal matrix with equal weight, which can be extracted as
common value and the P matrix will be reduced to the identity
matrix as follows:

£ = (0%)(AT14)"! (ﬁ) ATIY = (ATA)IATY  (10)
It is very evident that the variance will be cancelled out in equation
(10) and this equation will be reduced to the same form of equation
(8.a). Therefore, regardless of the implicit or explicit form of the
least squares solution, the weight matrix does not has any impact on
the estimated parameters (£).

The residuals will be computed as follows:

— A (11)

In light of equations (8.a and 10), the predicted residuals do not
depend on the weight matrix.

The estimated variance of unit weight, which is also called the
variance component or the reference variance will be computed as
follows for the explicit case:

= (Z)xOEized (12)

Where:

52: Estimated variance of unit weight or variance component after
the adjustment process.

r: redundancy number, which is the difference between the number
of equations and the number of unknowns.

It should be noted that the weight matrix (P) in equation (12) is
replaced by the multiplication of the identity matrix and the inverse
of the given variance of the observations. By doing this
factorization of the weight matrix, we are preparing the ground for
further simplification of equation (12).

In light of the analysis shown for equation (8.b), the square values
of the residuals shown in equation (12) can be written and
approximated as a summation of equal variance as follows:

~ Yiz
"+0'2) : a?

ln~2

(6?2 +02+
(13)

Tei+ei++e) =Yt

Now, we need to plug or insert the approximation shown in
equation (13) into equation (12):

1 1 i=n ~ 1 2
= (Z)xoCd =(5) = 1)

For a relatively large number of observations we get:

~o _ &Tpe

o, =

r

rEn (15)
In light of equations (13) and (15), equation (12) can be
approximated by the following new equation:
&P 1\ (N[ [O L. /1Y no? -1
% ===(7)<) Zei)=<?)(7 =100
=
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The dispersion matrix for the explicit case after the plugging of the
estimated variance component shown in equation (16) can be
written as follows:

DE) =
1x02(ATIA) ! =

GZ(ATPA) ™ = 62 x 0% (ATIA) T =

o2 (AT1A) 17)

By using the approximate results shown in equations (13) and (15),
we will get the following results for the variance component and the
dispersion matrix for the implicit case:

Tasst - () (straf = (2) 2

Equation (18) can be used to estimate a good approximation for the
unknown variance of the observations. The dispersion matrix for
the implicit case can be written as follows:

~2 _

o2 = Ln~2~

LlL—

(18)

D(&) = 62(ATIA)" = g%(ATIA)~! (19)

It is very important to note that equations (17) and (19) converged
to a similar approximate solution for the dispersion matrix after the
adjustment for the explicit and implicit cases. In other words, this
similarity is only available after the multiplication with the
estimated variance component values. In the explicit case, the
effect of the estimated variance component is very minor or
negligible and this is due to the multiplication by its value that is
closer to one. On the other hand and for the implicit case shown in
equation (19), the estimated variance component approximately
imposed the unknown variance of the observations on the
dispersion or variance-covariance matrix. Equations (17) and (19)
show a very interesting interplay on how the notion of equal
weights impacted the dispersion matrix after the estimation of the
variance component.

The methodology for evaluating this research work will be based on
the following steps:

e As stated before, the equation of the straight-line will be
used to test the formulation and the theoretical insights of
equal weight. Therefore, the first step will be to generate a
set of points that belongs to a straight-line. The following
equation will be used for the straight-line representation:

=mx+c (20)
y

X, y: 2D coordinates of the straight-line.
m: slope.
c: y-intercept

e Generate a set of random noise that belongs to the normal
distribution. In particular, a random noise with a zero mean
and a specific standard deviation value will be generated.

e Add the random noise to the coordinates of the straight-line.
In fact, two situations of random noise will be tested in this
paper. The first situation is concerned with the addition of
random noise to the y-coordinates; and in the second one to
both sets of the coordinates.
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e Use the presented set of equations to evaluate the effects of
equal weight. As stated, in this work we distinguished
between explicit and implicit weighting. In the explicit case
the weight matrix of equal and known variance was used
directly in the formulation of the least squares solution as
shown in equation (6). On the other hand, in the implicit
case the weight matrix used the generic or the believed
assumption of equal variance in the form of identity matrix
in the formulation of the least squares solution as shown in
equation (7). In other words, there is no knowledge of the
actual value of the variance of the observations and the
proposed work can be used to estimate a good
approximation for its value.

3. Test Cases

As shown in Table 1, four test cases will be used to demonstrate the
effects of equal weights on the derived parameters from the least
squares solution. Each case will be specified by four parameters,
namely, a case humber, a standard deviation, number of points, and
the specification of the corrupted coordinates. Case 1 and 2 share
the same level of random noise but they differ in the number of
points. Case number 3 shares the same number of points with case
number 2 but it differs in the random noise. Case number 4 shares
the same number of points and random noise with case number 2
but it differs in the effect of random noise since it impacts the two
coordinates. The last case is very important since it shows a
common scenario of least squares solution in which both
coordinates are random; and the ordinary solution of least squares
does not capture the full effects or interaction between random
errors distribution and the derived quantities from least squares
solution.

A straight-line with a slope of 1.53986 and an intercept of 50 units
will be used in all cases shown in Table 1. These two parameters of
the straight-line will be used to generate ideal measurements for the
2D coordinates that belong to this line. In other words, the vectors
basis of the design matrix shown in equation (1.a) truly express the
functional relationship between the two sides of the equation in the
absence of the random noise. In direct statement, we are dealing
with controlled experiments. Fig. 1 shows a plot for an example of
the coordinates for the straight-line coordinates that will be used for
testing the proposed work. These coordinates will be corrupted with
random noise that will be generated from normal distribution. Fig. 2
shows a histogram for a random noise that was generated from a
normal distribution with a zero mean and + 0.05 standard deviation.

4. Results and Analysis

Tables 2 and 3 show the results of the first case in which the
estimated values of the line parameters are identical (see Table 2) in
the explicit and the implicit cases. In other words, the experimental
findings confirm the theoretical derivation shown in equations (8.a
and 10). Moreover, Table 2 shows the estimated values for the
variance components for the explicit and implicit cases in which the
value for the explicit case is very close to one (1.03722) and the
value for the implicit case is very close to +0.05 (+0.0509). Once

again, this finding confirms the theoretical proof shown in
equations (16) and (18). Table 3 shows the two dispersion matrices
for the explicit and implicit cases and both of them are very close or
even identical to each other. In other words, the dispersion matrix in
the explicit and implicit case converge to similar values as predicted
by equations (17) and (19). Similar empirical and theoretical results
were obtained for the test cases number 2 and 3 and they were
shown in Tables 4, 5, 6, and 7. In test case number 4, the random
noise was added to the two coordinates of the straight-line. Recall
that this is not the situation for the other three cases shown in Table
1 in which the random noise was added only to the Y-coordinates.
As stated, case number 4 uses the same variance and the same
number of points that were used in test case number 2. Indeed, the
estimated line parameters are very identical in the explicit and
implicit cases because they were not sensitive to the appearance or
disappearance of the weight matrix (see Table 8).

At no surprise, the developed theory of this research does not
account for the variances at the explicit and implicit weighting.
Moreover, it gives very optimistic values for the dispersion matrices
by one-order of magnitude for the variances of the line parameters
(see Table 9).
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Table 1. Test cases.

Case Standard Number of Corrupted
Number Deviation Points Coordinates
1 +0.05 500 Y
2 +0.05 1000 Y
3 +0.07 1000 Y
4 +0.05 1000 X&Y
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Table 2: Results for case number 1.

Parameter Explicit Case Implicit Case
m 1.53989 1.53989
¢ 49.99636 49.99636
52 1.03722 0'002058;3&1[):1“

Table 3. The two dispersion matrices for case number 1.

Weighting Type Dispersion Matrix

Exolicit 2.489%-10 -6.235e-08

P -6.235¢-08  2.080e-05

Implicit 2.489e-10 -6.235e-08

P -6.235¢-08  2.080e-05

Table 4. Results for case number 2.

Parameter Explicit Case Implicit Case

m 1.53986 1.53986

é 49.99850 49.99850

0.00269

~2 y
% 1.0792 STD=0.0519

Table 5. The two dispersion matrices for case number 2.

Weighting Type Dispersion Matrix

Explicit 3.237e-11  -1.620e-08
-1.620e-08  1.080e-05
Implicit 3.237e-11  -1.620e-08
-1.620e-08  1.080e-05
Table 6. Results for case number 3.
Parameter Explicit Case Implicit Case
m 1.53986 1.53986
é 49.99837 49.99837
o2 0.94093 0.00461 STD=+
0.0679

Table 7. The two dispersion matrices for case number 3.

Weighting Type Dispersion Matrix
Exolicit 5.532e-11 -2.769e-08
P -2.769¢-08  1.846e-05
imolicit 5.532e-11 -2.769e-08
P -2.769¢-08  1.846e-05
Table 8. Results for case number 4.
Parameter Explicit Case Implicit Case
m 1.53986 1.53986
é 50.00087 50.00087
52 0.30156 0.00075
STD=+0.0274

Table 9. The two dispersion matrices for case number 4.

Weighting Type Dispersion Matrix

Explicit 9.046e-12  -4.527e-09
-4.527e-09  3.020e-06
Implicit 9.046e-12  -4.527e-09
-4.527e-09  3.020e-06
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5. Conclusions and Recommendations

This paper presents a theoretical proof for the effect of equal
weighting strategy on the derived parameter from a least squares
solution. We distinguished between the explicit and implicit
strategies for introducing the weight matrix in the formulation of
the least squares solution. In the explicit case, the weight matrix
uses the known variance of the observations along its diagonal. On
the other hand, the implicit case replaces the unknown variance of
the observation by an identity matrix for weighting. As shown in
the sequel of this paper, the distinction between implicit and explicit
cases of equal weights is irrelevant to the formulation of the target
function of least squares optimization. In particular, the implicit
weighting will account for both cases. In other words, the target
function is unresponsive to the explicit case and intuitively
compatible with the notion of equal weights. Interestingly enough
and for a relatively large number of observations, the implicit case
can be used to estimate a very close approximation for the value of
the unknown variance of the observations.

The posterior variance-covariance or the dispersion matrices in the
implicit and explicit cases are very close to each other.
Experimental results confirmed the theoretical proof for Gauss-
Markov Model, which is also known as the ordinary least squares
solution. At no surprise, the developed theory cannot account for
the correct values for the estimated variance component when the
random noise affected the two coordinates in the explicit and
implicit cases. Therefore, further work is required to handle the
effect of equal weight when the random noise affected both
coordinates. In general, the presented approach can be used to
evaluate the accuracy of the measuring instruments in geometrics
and other fields.

Monte Carlo simulation provides an elegant and exciting
mechanism to test the validity of the proposed work in terms of
supplying unlimited number of test cases with a chosen level of
uncertainty or random noise. Accordingly, a whole spectrum of
testing campaign can be carried out for deep understanding and
analysis for the different functional models within the framework of
adjustment computations on how they interact with the randomness
in geomatics and other fields.
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