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Abstract: Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation
system in order to damp the low frequency, generator angle, speed variation, generator power, voltage magnitude
and power flow oscillations. This paper presents robust decentralized power system stabilizer (PSS) design
approaches for a power system consisting of 41 machines with 167 buses. This paper mainly focuses on developing
robust decentralized control techniques for power systems, with special emphasis on problems that can be expressed
as minimizing a linear objective function under linear matrix inequalities [LMI] in tandem with bilinear matrix
inequalities [BMI] constraints. The design problem is considered the natural extension of the reduced order for
decentralized dynamic output H2/Hoo -norm controller’ s synthesis for power systems. The resulting optimization
problem has a general bilinear matrix inequalities (BMIs) form which can be solved using an iterative linear matrix
inequalities [LMIs] programming method. Simulations were carried out using loss of line without fault tests at

transmission line on Sudan grid.
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1. INTRODUCTION

Most of the generating units recently added to the Sudanese
grid were equipped with continuously-acting voltage
regulators. As this unit constitutes a large percentage of the
generating capacity, it became apparent that the voltage
regulator action had a detrimental impact upon the dynamic
stability of the power system.

The deregulation of the electricity market has led to increasing
uncertainties concerning power flow within the network.
Oscillations of small magnitude and low frequency often
persisted for long periods of time and in some cases presented
limitations on power transfer capability. This is further
compounded by the physical expansion of interconnected
networks, which makes the prediction of system response to
disturbances and severe loading condition more difficult [1].

Power system stabilizers were developed to aid in damping
these oscillations via modulation of the generator excitation
[1], [2]. These and other similar developments prompted both
power and control engineers to use new controller design
techniques and more accurate model descriptions for the
power system components with the objective of providing
reliable electricity services. To meet modern power system
requirements, controllers have to guarantee robustness over a
wide range of system operating conditions, and this further

highlights the fact that robustness is one of the major issues in
power system controller design. Recently, a number of efforts
have been made to extend the application of robust control
techniques to power systems, such as L., optimization [1, 2],
H.- optimization and structured singular value (SSV or p)
technique [3-5].Tuning of supplementary excitation controls
for stabilizing system modes of oscillation has been the
subject of much research during the past 10 to 15 years. The
secure operation of power systems requires the application of
robust controllers, such as Power System Stabilizers (PSS), to
provide sufficient damping at all credible operating conditions

[1].

This paper focuses on the extension of linear matrix
inequalities (LMIs) based mixed H,/H., optimization approach
to problems of practical interest in power systems. The design
problem considered is the natural extension of the reduced
order decentralized dynamic output H,/H, controller’s
synthesis for power systems. In the design, the fixed-structure
H,/H,, dynamic decentralized output feedback controller
problem is first reformulated as an extension of static output
feedback controller design problem for the extended system.
The resulting optimization problem has a general bilinear
matrix inequalities (BMIs) form which can be solved using
iterative LMIs programming method based on linearizing the
objective function with respect to its variables. Moreover, the
paper also presents a general approach that can be used for
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designing any order robust PSS structure controllers in power
system. The application of this approach to a multi-machine
power system allows a coordinated tuning of controllers that
incorporate robustness to changes in the operating conditions
as well as model uncertainties in the system. Therefore, this
paper proposes alternative computational schemes that solve
the robust decentralized controllers design problem for power
systems using [6]:

— Sequential linear matrix inequality programming.

— Generalized parameter  continuation  method

involving matrix inequalities.

2. OUTLINE OF THE PROBLEM
—  System Model

Consider the general structure of the i'" — generator together
with the PSS block in a multi-machine power system shown
in Figure 1. The input of the i - controller is connected to the
output of the washout stage filter, which prevents the
controller from acting on the system during steady state. Let
the structure of this i - washout stage be given by [6]:

ﬂAw(s) 1)

Ay(s) = 1+sTy,

To illustrate the design procedure, consider the following
first-order PSS controller with a-priori assumption made on
the value of T;,:

Ki [1+5TL-1] (2)

1+sT;»

The PSS structure in eq. (2) can be further rewritten in the
following form

|:1+STL-1
t 1+sTp

—] 3)

] [K” + Koo, 2

where K;j; and K, are easily identified as gain parameters that
are to be determined during the design. Moreover, the gain
parameters K;; and K;, together with T;, determine the original
parameters K;and Tj;.
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Fig. 1.General structure of the i"" - generator together with the
PSS structure and washout stage in a multi-machine power
system

After augmenting the washout stage in the system, the i" -
subsystem, within the framework of Hy/H, design, is
described by the following state space equation:

X =A;x; + Z Ayjx; + BioWyo + By Wiy + B,
i1

z; = Cyyx; + Dijjowio + Dipiwi + Doy 4)
Vi = C x + D1y0W10 + Dlylull

Where x;eR™iis the state variable, u;eR":is the control input,
y;eR"™ is the measurement signal, z;eR™iis the regulated
variables, w;peR™ 0 and w;;eR™ i1 are exogenous signals
(assuming that w;, is either independent of w;y or dependent
causally on wio for the i - subsystem [7].

Now consider the following approach to design decentralized
robust optimal H,/H., controllers of the form eq. (3) for the
system given in eq. (4), i.e. determining optimally the gains
Ki; and K;, within the framework of H,/H,, optimization. This
implies the incorporation of the dynamic part of the controller
in eq. (4), namely

T
1
[1 /STiz] (5)
and then reformulating the problem as an extension of a static

output feedback problem for the extended system. Hence, the
state space equation for i'" — subsystem becomes:

] [ZJ# Auxj] Bio

[24] [Ba Cyy Aa] [xa B, DiyO] Wi +

[BC,DM] Wir + [ 12]

x.
z;= [Ca 0] [x;-] + DiroWio + Dina Wit + Dipp

~ x‘
y= [Dci Ciy Cci] [xcli] + Dci DiyOWiO + DCi Diylwil (6)

WhereA,;,B,;, C.; and D, are the state space realization of eq.
(5) and are given by:

Ay = [_ 1/Ti2]’ Be = [1/Ti2]’ Cai = [(1)]' Dei = [(1)] )

Finally, the overall extended system equation for the system
can be rewritten in one state space model as

X =AxX+ EOWO + §1W1 + Bzu
Z = C~1x + 510W0 + 511W1 + Elzu (8)
y = C,x + Dyowy + Dyywy + Dypu

Where
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B, = blkdiag{ Blz] [B(Z)Z] [[Bgz]]}

0
C; = blkdiag{[C; 0][C;; 0]..[Cyy O}
C, = blkdiag{[Dc1C1y Cc1][Pc2C2y  Ce2]...[DenCny  Cenl}
Dy = blkdiag{Di19, D310, --- Dy10}
Dy, = blkdiag{Di11, Dy11, ... Dy11}
Dy, = blkdiag{Di12, Dy12, ... Dy12}

Eyo = blkdiag{Dchlyo, DCZDZyO' DCNDNyO}
Eyl = blkdiag{DClDlyl, Dc2D2y1: DcNDNyl}

Hence, the static output feedback controller for i - subsystem
is given as:

u; = K )

Where K; = [K;; K;;] .Moreover, the decentralized static

output feedback controller for the whole system will then have

the familiar block structure of the form

u=Kpy (10)

Where K, = blkdiag(Ky, Ky, ... .... Ky ). Substituting the static

output feedback strategy (10) into the system equation of eq.
(8), the closed loop system will become

X¥=Au% + Biowo + Biyws

z = Ce1X + Dgyowy + Deipwy

Where,
Acl =A+ BZKDCyI BC/O = BO + BZKDDyOIBCll = Bl +
B2KpDy1,

C1 =Gy + DKy Gy,
Dcjo = Dyg + D12KpDyy,
D¢y = D11 + DKy D,

3. ROBUST DECENTRALIZED
CONTROLLER DESIGN

DYNAMIC

3.1 Mathematical Model for Large - Scale Systems

Consider a large-scale interconnected system S composed of
N subsystems S;, i =1, 2, ... K, N described by the following
equations:

N
Xy = Aixi (8) + Biw (8) + Z (Mij + AMy; (t))xj(t)
j=1
yi(t) = Cix; (¢) (11)
Where x;(t) € R™is the state vector, u;(t) € R™ R is the
control variable, y;(t) € R™ is the output variable of the
subsystem S; . The matrices A;, B, Ciand Mjare constant
matrices of appropriate dimensions conformable to each S;.
Furthermore, the matrix M;represents the interconnections
and/or interactions among the subsystems. The term A M;; (.)is
intentionally introduced to take into account the effect of any
deviation from the given operating condition due to
nonlinearities and structural changes in the system [8].

The interconnections and uncertainties terms in eq. (11),
which are used to characterize the interactions among the
subsystems and the effects of nonlinearities within each
subsystem of a power system, can be rewritten in the
following form.

hi(t,x) = 3 (My; + AM; )% () (12)
Furthermore, assume that the following quadratic constraints
hold:

hi (8,07 hy(t,%) < &8 x () H] Hyx(t) (13)
Where &i> 0 are parameters related to interconnection
uncertainties in the system and H; are matrices that reflect the
nature of interconnections among subsystems. Moreover,
assume that the pairs (A;,B;) and (A;,C;) are stabilizable and
detectable, respectively. With the assumption of no

overlapping among x; (t), the state variable x(t)eR™ of the
overall system is denoted by:

x(@®) =[x (), 27 (), ey O

Thus, the interconnected systems can then be written in a
compact form as [8]
x(t) = Apx(t) + Bpu(t) + h(t, x)
y(&) = Cpu(t) (14)
Where x eR?is the state, u € R™is the input and y € RYis the
output of the overall system S, and all matrices are constant
matrices of appropriate dimensions with:
Ap = diag {Ay, Ay, -+, An},
Bp = diag{By, By, -+, By},
Cp = diag{Cy,Cy, -+, Cy}
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The interconnection and uncertainty function h(t,x) =

[A] (¢, x), KL (t,x),---, hk (t, x)]"is bounded as
KT (¢, )h(t, x) < x" (O[T & H Hi]x(6) (15)

In the following, consider designing a decentralized dynamic

output feedback controller of an n."™- order for the i"-
subsystem given in eg. (11) of the form [8]:

Xeie) = AciX; (t) + By (t)

u; (t) = Cexc;i(t) + Dy y; (t) (16)
Wherex; (t) € R":is the state vector of the ith-local controller
and A, B, Cc;and Dg;are constant matrices to be determined
during the design. After augmenting the i"™ controller in the
system, the state space equation for the i extended subsystem
will have the following form

[xi (t)] _ [Ai + B;D,; C; BiCCL-] [xi(t)

a B C; Ag 1lx, (t)

% (6) +[7an

Which further can be rewritten as

Ai Onixnfi ] [Oncixnri

[fci(t)] {([Ondxni U | B OBXH/C1 gii]‘}

i (t) On, xny I,

o k [ Ci Oinnci] J
)+ [ (18)

With minor abuse of notation, the above equation can be
rewritten in a closed form

%(O=[4; + B.K,C;]%,(t) + hi(t, %) (19)

Where #@®) =kI'®) xL®o]" , and the
matricesA;,B;,C;andK;are given as follows
A = 4; Onixnci B = Oncanci B; G =
l Oncix"i M XN l I"a‘ Ona‘Xmi l
On i XM In i A,; B
cl cl cL ’K‘ - [ ClL Ccl 20
[ Ci Oqixnci ' Cci Dci ( )

Moreover, the function h;(t,%) satisfies the following
quadratic constraint
hi(t, )Th(t, %) < &2x" (O)H Hx(t) (21)

Where the H; € RPX (5 ) jg partitioned according to the
following
Hi = [Hil Oancl : HiZ Oancz Pt HL'N OnxncN] (22)

Thus, the overall interconnected system can then be rewritten
in a compact form as eq. (19)

x(t)=[4p + BpKpCp|x(t) + h(t, %) (23)
Wherex(t) = [%] (t), %} (t), ... .., X} (t)]"and all matrices are
constant matrices of appropriate dimensions i""

AD = dlag {KDKZ! ,KN},
El = diag{El, Ez, e, EN}‘
C~D = diag{cl, Cz, °tey, CN}
Moreover, the function
KT (¢, x)h(t, x) < xT(O)[XN- €2 HT H,|x(t)bounded as
RT(t, D)h(t, %) < T (O, E2H H |x(0) (24)

are instrumental in establishing the robust stability of the
closed-loop interconnected system eq. (23) via a decentralized
robust control strategy (16) under the constraints eq. (24) on
the function h(t, %) [4].

Thus, the problem of designing a decentralized control
strategy for the interconnected system (11), which at the same
time maximizing the tolerable upper bounds on the

interconnection and nonlinearity uncertainties, has the
following form
Min Trace (I (25)

Subject to (24)
Where I'=diag {y1, v2,..., Yn} -

Therefore, the problem of designing a decentralized control
strategy given in eq. (25) for the interconnected system eq.
(11) can be restated as a non-convex optimization problem.
The coupling constraint can be further relaxed as an LMI
condition as follows:

v, 1

L ox, (26)

|20

Furthermore, using the cone-complementarity approach, there
exists a decentralized robust output stabilizing controller Ky if
the global minimum of the following optimization problem

Min Trace (I') + Trace (Yp,Xp)Subjectto Y, >0 , X, > 0,
r>0 (27)

Eq. (26) and (27) isa* + ¥\, n;
WhereTrace (T) < a*

3.2. Robust Decentralized Dynamic Output Feedback
Controller Design Using Sequential LMI

—  Programming Method
The optimization in eq. (27) is a non-convex optimization

problem due to the bilinear matrix term in the objective
functional. To compute the (sub)-optimal solution of this
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problem, an algorithm based on a sequential LMIs
programming method is proposed. The idea behind this
algorithm is to linearize the cost function in eq. (27) with
respect to its variables and then to solve the resulting convex
optimization problem subject to the LMI condition eq. (25) at
each iteration. Moreover, the algorithm will set appropriately
the direction of the feasible solution by solving a subclass
problem of Newton-type updating coefficient. Furthermore,
the solution of the optimization problem is monotonically
non-increasing, i.e. the solution decreases in each iteration
with the lower bound being ¥V ,n; plus some positive
number. Thus, the sequential LMI programming method for
finding the decentralized dynamic output feedback controllers
has the following optimization algorithms [9].

4. ROBUST DECENTRALIZED Hoo CONTROLLER
DESIGN

4.1 Problem Formulation

Consider the general structure of the i"-generator together
with an nci™order PSS in a multi-machine power system
shown in Fig. (1). The input of the i"-controller is connected
to the output of the washout stage filter, which prevents the
controller from acting on the system during steady state. After
augmenting the washout stage in the system, the i" subsystem,
within the framework of H, design, is described by the
following state space equation as taken in egs. (24). [10]

Xt) = Aux () + Z}-ﬂ Ay x; (£) + BiogWio (t) +
B Wi (t) + Bipu; (t)

zi(t) = Cyix;(t) + Dy w;(t) + Dypyu; () (28)

yi(©) = Cyx;(t) + Dyywi(6)

Where x;eR™ is the state variable, wu;eR™iis the control
input, y;eRY% is the measurement signal, z;eRPi is the
regulated variables, w;eR"i is exogenous signal for i"-
subsystem. Moreover, assume that there is no unstable fixed
mode with respect to

[CTyl'CTYZ'""CTyN]'[Aij]NxNv[Ble Bl Biyl"

Consider the following decentralized output feedback PSS
controller for the system given in eq. (28) by using eq. (16).
Xei) = Acixi (t) + Beyyi(£)

u; () = Coxei(t) + Dy (t) (29)
Where x.;eR" is the state of the i™-local controller, ngis a
specified dimension, and A, Bgi, Ce, Dei, 1 =1, 2,.., N are
constant matrices to be determined during the designing. In
this paper, the design procedure deals with nonzero Dy,
however, it can be set to zero, i.e., Dy = 0, so that the i"-local
is strictly proper controller. After augmenting the
decentralized controller eq. (29) in the system, the state space
equation for the i"-subsystem will have the following form:
[11]

x; (t):(f‘Iii + B,,K,C

2 i )X (8) + (B +ByK;Cy )w; () +
=i Aij % (t)

(30)
z;(0) = (C; + D12K;Cy )%(6) + (D11 4+B12K: Cyp )w; (0)

Where %;(t) = [x[(t) xL(t)]", is the augmented state
variable for the i""-subsystem and

A= Ai]' Onanci B, = By
i1 — 0 D1 — 0 ’
N Xn; N XN g nXr;
s Oncixna BZL
BZi - L 0 ’
Nei i XN
~ Ona XN Nei XNej
¢y = 0 ,
yi qixXng

3 _ Onsixﬁ'
Dyli -

D12' )
l] Dyli

Dypi = [Opixnci

Moreover, the overall extended system equation for the
system can be rewritten in one state-space equation form as

%) = (Ay + EZiKiéyi)fi ®+ (Eij +ByiK; Cyi)Wi ®z @) =
(Ci + D12k, €y )%(t) + (D11 +B12K: Cy1 )w; () (31)

Where,
A=[4;], v
Dy; = diag {D111, D1z, -+, Din}
512 = diag {5121'5122: " 5121\1}1
5y1 = diag {ﬁyn: ﬁylZ' Ty ﬁle}l
§1 = diag{En:Ez"“'EN},
Ez = diag{§21,§22, "':EZN}:
C, = diag{C,1,Cyp, -, Cyn },
51 = diag{én, 612: "':ClN}:
K, = {K,K;, ...., Ky 3.

Where,

C; = € + DK, C,

D, = Dj; + ByK,C)y

Consider the following design approach where the controller
strategy in eq. (22) internally stabilizes the closed-loop of the
transfer function ||T,(s)|| from w to z and moreover satisfies a
certain prescribed disturbance attenuation level y >0 , i.e.,
IT20(9)|lo< v. In the following, the design procedure assumes
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that the system in eq. (21) is stabilizable with the same
prescribed disturbance attenuation level y via a centralized H.,
controller of dimension equal to or greater than n, = YN n,
in which each controller input u;is determined by all measured
outputs y;, 1 < j < N. The significance of this assumption lies
on the fact that the decentralized controllers cannot achieve
better performances than that of centralized controllers. In this
paper, the centralized Hoo controller is used as initial value in
the two-stage matrix inequality optimization method.

4.2 Decentralized H,, Output Feedback Design

Designing a decentralized H,, output feedback controller
for the system is equivalent to that of finding the matrix K
that satisfies an H,, norm bound condition on the closed-loop
transfer function T,(S) = CgolSI  —Ag)BeotDeofrom
disturbance wgto measured output z, i.e. ||Tw(9)]l.< vy (for a
given scalar constant y >0 ). Moreover, the transfer functions
Tow(s) must be stable [12]. The instrumental in establishing
the existence of decentralized control strategy eq. (22) that
satisfies a certain prescribed disturbance attenuation level y >0
on the closed loop transfer function T,,(S) Cu(sl
—Ay)B+D, from disturbance w to measured output z, i.e.
Tzwll..<y.

However, due to the specified structure on the controller (i.e.,
designing controllers with “block diagonal”) makes the
problem a nonconvex optimization problem. To compute the
optimal solution of this problem, the design problem is
reformulated as an embedded parameter continuation problem
that deforms from the centralized controller to the
decentralized one as the continuation parameter
monotonically varies [13]. The parameterized family of the
problem is given as follows:

B(Kp,P,0) = & ((1 - MKy +AKp, P) <0 (32)
with A€[0,1] such thatat A = 0
®(Kp,P,0) = (K¢, P) ata=1 (33)
®(Kp, P,0) = o(Kp, P) (34)
_ AF BF
Where Ky = Cr Dp] (35)

is a constant matrix of the same size as Kp and composed of
the coefficient matrices Ar, Br, Crand Dgof an n. dimensional
centralized H,, for the disturbance attenuation level y . The
centralized controller K¢ can be obtained via the existing
method. Thus, the term (1-A)Ke+A Kp in eq. (32) defines a
homotopy interpolating centralized H,, controller and a
desired decentralized H,, controller. Thus, the problem of
finding a solution of eq. (26) can be embedded in the family
of problems as:

d(Kp,P,A) <0, 2e0,1] (36)

Thus, the algorithm based on parameter continuation method
for finding the robust decentralized output feedback controller
has the following two-stage matrix inequality optimization
algorithm [11].

4.3 Reduced Order Decentralized Controller Design

The algorithm proposed in the previous section can only be
applied when the dimension of the decentralized H., controller
is equal to the order of the plant, i.e., n=n.. However, it is
possible to compute directly a reduced-order decentralized
controller, i.e., nc< n by augmenting the matrix Kpas

AD Onnx(n_nc) BD
Ro=|"  Thoe iw

37)

CD Om Xn—n; : DD

Where the notation =, are any submatrices 4y, , By, Cp ,
and D, are the reduced-order decentralized controller
matrices. Note that the n-dimensional controller defined by
K, of eq. (40) is equivalent to the n.-dimensional
decentralized  controller  described by  state-space
representation of (Ap, By, Cp, Dp ) if the controller and
observable parts are extracted. Next, define the matrix
function ®(Kp, P, 1)as

B(Rp, B,) = @ (1= VK + 2Ky, F) < 0 (38)
Then, one can apply the algorithm proposed in the previous
section with Kgof n-dimensional centralized H,, controller. In
this case, at A =0 set the matrix K, to zero except (2,2)- block-
| (-nc yand proceed with computing K;, for each A. If the
algorithm succeeds, then the matrices (Ap,Bp, CpandDp)
extracted from the obtained Kpat A =1 , comprise the desired
decentralized H,, controller [9].

5. SIMULATION RESULTS

The robust decentralized dynamic output control design
approaches presented in the previous section of this paper are
now applied to a test system. This system is Sudan grid, which
consists of 41 generators and 167 bus bars specifically
designed to study the fundamental behavior of large
interconnected  power  systems including inter-area
oscillations. The system has 41 generators and each generator
is equipped with standard exciter and governor controllers.
The parameters for the standard exciter and governor
controllers used in the simulation were taken from Sudan grid
companies. Moreover, the generators for these simulations are
all represented by their fifth-order models with rated terminal
voltage of 10.5 KV, 11 kV and 13.8 kV. In the design, speed
signals from each generator are used for robust decentralized
dynamic output control through the excitation systems. The
following loading condition was assumed: at bus 28-63
transmission line (Khartoum-Kuku) a load of [PL1 104 MW,
QL1 56 Mvar]. The system was linearized and the
corresponding system equations were decomposed as a sum of
two sets of equations. While the former describes the system
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as a hierarchical interconnection of 41subsystems, the latter — Table 1. The calculated PSS gains and parameters for each
represents the interactions among the subsystems. After  generator

augmenting the controller structure in each subsystem, the

design problem was formulated as a minimization problem of n @ o

linear objective function involving LMIs and coupling BMI 3 & g § E g £ £

constraints. Using the algorithm proposed in, the robust sub- S § “ bl Sl s 3 T 2 3

optimal decentralized second-order PSS for each subsystem S b 3t 82 s & 22 T

were designed. The robust decentralized PSS designed S 2 g2 ® = BEF s = § =

through this approach are given in Table-1. The convergence © g =38 i L 3 3

behavior of Algorithm for a relative accuracy of ¢ = 10-6.

Similarly, second-order PSS are designed using the approach

proposed. However, it is possible to extend the method to any -3 100 10 01 0.02 0.08 0.02

order and/or combinations of PSS blocks in the design 4-7 50 10 0.1 0.02 0.08 0.02

procedure. After including the washout filter in the linearized 820 100 10 0.1 0.02 0.08 0.02

system equation, the design problem is reformulated as an

embedded parameter continuation problem that deforms. 21-21 10 10 0.1 0.02 0.08 0.02
28-29 50 10 0.1 0.02 0.08 0.02

From the designed centralized H, controller to the 30 10 10 0.1 0.02 0.08 0.02

decentralized one as the continuation parameter 31 10 10 0.1 0.02 0.08 0.02

monotonically varies. Speed signals from each generator, the

outputs of the PSS together with the terminal voltage error 8241 100 10 01 0.02 0.08 0.02

signals, which are the input to the regulator of the exciter, are

used as regulated signals within this design framework. The

robust decentralized PSS designed through this approach are

also given in table-1. For loss line which connects bus bars 2.5 —— Without PSS

28-63 at (places), the transient responses of generators on !t out

Marrwi electrical-station with and without the PSSs in the o | With PSS

system are shown in Figs.(3) to Figs (7) To further assess the

effectiveness of the proposed approaches regarding the 3

robustness, the transient performance indices were computed 05; 15

for keeping constant total load in the system. The transient ‘03)

performance indices for generator angle 0 Fig (3), generator 2 —

speed deviation oy Fig (4) generator powers Pg; Fig (5), <

generator terminal voltages Vy Fig (6), and Line power flow

from generator Fig (7) following when loss line at bas bars 0.5

28-63 at (places), computed using the Matlab Power System

Toolbox Author: Graham Rogers, which call load flow 0

programs without PSS and with PSS acted as feedback 0 5 1 15 20 25

controller. These transient performance indices are used as a QI'ime Sec.

qualitative measure of system behavior following any
disturbances including controller actions. Moreover, for

comparison purpose, these indices are normalized to the base Fig. 3. Machine angle of Marrwi hydro-turbine without and

operating condition for which the controllers have been with PSS
designed: Any power system stabilizer has one input power
. v,
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Fig. 2. The PSS structure used in the design Fig.4. Machine speed deviation of Marrwi hydro-turbine

without and with PSS
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6. CONCLUSIONS

The objective of power system stabilizers is to extend stability
limits on power, transfer by enhancing damping of system
oscillations via generator excitation control. Lightly damped
oscillations can limit power transfer under weak system
conditions, associated with either remote generation
transmitting power over long distances or relatively weak
interties connecting large areas. This control must include not
only the transient damping contributions to all modes of
system oscillation, but the impact upon system performance

following large disturbances and line outer without fault,
when all nodes of the system are excited simultaneously.
Stabilizers utilizing inputs of speed, power, and frequency
have been analyzed with respect to both tuning concepts and
performance capabilities.

A robust damping controller for power system oscillations is
presented. The robust controller is a supervisory level
controller that can track system inter-area dynamics online.
An LMlI-based method is applied to design H, controllers.
The PSS controller structure may significantly increase the
system operating range. The performance of the Sudan grid
robust controller is illustrated using a 41 machine, 167-bus
system. Based on limited testing, the simulation results show
that the proposed robust controller can effectively damp
system oscillations under range line outer without fault
conditions.

In this paper, a design scheme of power system stabilizers for
a multi-machine (41 generators) power system with 167 buses
using decentralized fast output sampling feedback via reduced
order model has been developed. The proposed method results
satisfactory response behaviour to damp out the oscillations.
The decentralized control via reduced order model can be
applied simultaneously to the all machines. Thus the applied
control scheme is of decentralized nature. This method can be
extended to design the robust decentralized power system
stabilizers for a multi-machine power system. It is found that
designed controller provides good damping enhancement for
various operating points of Sudan grid. The proposed
controller results in a better response behavior to damp out the
oscillations. Simulation results from a nonlinear power system
are given to demonstrate the applicability and effectiveness of
the proposed approach. This paper presents a linear matrix
inequality (LMI)-based approach for designing a robust
decentralized structure-constrained controller for power
systems. The problem of designing a fixed-structure
H,/H..dynamic output feedback controller is first reformulated
as an extension of a static output feedback controller design
problem for the extended system. The resulting optimization
problem has bilinear matrix inequalities (BMIs) form which is
solved using sequentially LMI programming method. The
effectiveness of the proposed approach is demonstrated by
designing  (sub)-optimal fixed-structure power system
stabilizers (PSSs) controllers for a test power system so as to
determine the optimal parameters.

The paper also proposes a new approach to solve such
optimization problems using a sequential LMI programming
method to determine (sub)-optimally the decentralized output
dynamic feedback controllers of the system. The approach is
demonstrated by designing power system stabilizers (PSSs)
for a test power system.

The testing of this system showed positive results. The LMI
controller worked well and provided a reasonable amount of
damping to the inter-area modes.
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