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Abstract: Application of power system stabilizers (PSS), as supplementary control signals for the excitation system 

in order to damp the low frequency, generator angle, speed variation, generator power, voltage magnitude and power 

flow oscillations. This paper presents the application of robust decentralized power system stabilizer (PSS) design 

approaches, for Sudan power system which consists of 41 machines with 167 buses. The paper mainly focus on 

operator testing of robust decentralized control techniques for power systems, and the optimal control approach to 

robust control design. Results of robust decentralized control design approaches are defined by using state space 

model equations. Also for testing dynamic stability Lyapunov theorem is used. The simulations were carried out 

using symmetrical fault and results presented by Power System Analysis Toolbox, MATLAB. 
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1. INTRODUCTION 

The main function of the electric power system is to supply 

electric energy to the end customer in an efficient way [1]. 

This power system is dynamic and nonlinear in nature and 

works in a changing environment. These changes may 

produce oscillations which in certain situations can cause 

instability or oscillatory performance [2]. The power system 

stabilizer (PSS) is a supplementary excitation controller used 

to damp oscillations in the power system. Power system 

stabilizer (PSS) controller design, methods of combining the 

PSS with the excitation controller (AVR), and investigation of 

many different input signals, and the vast field of tuning 

methodologies [3]. 

 

This paper is an investigation for modifying the input of a 

specific type of PSS as applied to a power system, and is not 

intended to serve as an exhaustive review of the domain of 

PSS application to make optimum control of Sudan grid. Once 

the oscillations are damped, the thermal limit of the tie-lines 

in the system may then be approached. This supplementary 

control is very beneficial during line outages, large power 

transfers and faults [1],[4]. However, power system 

instabilities can arise in certain circumstances due to negative 

damping effects of the PSS on the rotor. The reason for this is 

that PSSs are tuned around a steady-state operating point, 

their damping effect is only valid for small excursions around 

this operating point. During severe disturbances, a PSS may 

actually cause the generator under its control to lose 

synchronism in an attempt to control its excitation field [5]. 

This paper mainly focuses on testing operation of robust 

decentralized control techniques for power systems, and the 

optimal control approach to robust control design. These tests 

are obtained by using state space equations and stability and 

Lyapunov theorem. The paper is organized as follows: Section 

II power system stabilizer state space object, Section III 

systems and control, Section IV simulation results and Section 

V summery and conclusion. 

2. POWER SYSTEM STABILIZER STATE SPACE 

OBJECT 

 System Model 

 

Consider the general structure of the i
th

– generator together 

with the PSS block in a multi-machine power system shown 

in Fig. 1. The input of the i
th

 - controller is connected to the 

output of the washout stage filter, which prevents the 

controller from acting on the system during steady state. 

Power system stabilizers commonly have transfer functions of 

the form [6]. 

 

𝑃 𝑠 = 𝐾𝑠
𝑠𝑇𝑊  1+𝑠𝑇1  1+𝑠𝑇2 

 1+𝑠𝑇𝑊   1+𝑠𝑇3  1+𝑠𝑇4 
   (1) 
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Fig. 1.General structure of the i
th

 - generator together with the 

PSS structure and washout stage in a multi-machine power 

system 

 

Fig. 2.Ideal and real PSS phase lead 

A state space object representing this transfer function may be 

formed by multiplying state space objects by a scalar, a 

washout and two lead/lags. 

 

To design a power system stabilizer, a system model with the 

generator rotor states removed is required. The input to the 

system is the voltage reference of the generator at which the 

power system stabilizer is to be placed. The output is the 

generator electrical power. The ideal power system stabilizer 

phase lead is given by the negative of the response of speed. 

The ideal and real PSS phase leads are shown in Fig. 2. 

3. SYSTEMS AND CONTROL 

The goals of control system achieve some objectives. 

Generally speaking, the control objectives can be classified to 

ensure either stability or optimality, or both of a system [7]. 

Stability means that the system will not „blow up‟; that is, the 

output of the system will not become unbounded as long as its 

input is bounded. This is a basic requirement of most systems 

that we encounter. Optimality means that the system 

performance will be optimal in some sense. 

 

To achieve stability or optimization, some control needs are to 

be used. Generally speaking, two types of control can be used: 

(1) feedback or closed-loop control; and (2) open-loop 

control. 

3.1. State Space Model 

 

In classical control theory, a transfer function is used to 

describe the input and output relation of a system, and hence 

serves as a model of the system. If the system to be controlled 

is nonlinear, or time-varying, or has multiple inputs or 

outputs, then it will be difficult, if not impossible, to model it 

by a transfer function [8]. Therefore, for nonlinear, time-

varying, or multi-input–multi-output systems, we often need 

to use state space representation to model the systems. The 

state variables of a system are defined as a minimum set of 

variables, such that the knowledge of these variables at any 

time t0, plus the information on the input subsequently 

applied, is sufficient to determine the state variables of the 

system at anytime t > t0. If a system has n state variables, say 

that the order of the system is n. And often use an n-

dimensional vector x to denote the state variables: x ∈ℛ𝑛 . Use 

of u ∈ℛ𝑚  to denote the m-dimensional input variables and y 

∈ℛ𝑝 to denote p-dimensional output variables. A state space 

model of a system can then be written as the general state 

space models to describe systems by the state equations (2) 

and the output equations (3)[8]. 

 

x = f(𝑥, 𝑢, 𝑡)    (2) 

 

y = g(𝑥, 𝑢, 𝑡)    (3) 

 

Where f: ℛ𝑛 × ℛ𝑚 × ℛ → ℛ𝑛  and g: ℛ𝑛 × ℛ𝑚 × ℛ → ℛ𝑝are 

nonlinear functions. Most practical systems are nonlinear. 

However, many nonlinear systems can be approximated by 

linear systems using linearization methods [8]. 

 

3.2. Stability and Lyapunov Theorem 

 

Consider a general nonlinear system 

 

˙𝑥 = 𝐴𝑥     (4) 

 

x ∈ℛ𝑛  are the state variables and A : ℛ𝑛→ ℛ𝑛  is a (nonlinear) 

function. We assume that A is such that the system (4) has a 

unique solution x(t) over  0, ∞ for all initial conditions 

x(0)and that the solution depends continuously on x(0). A 

vector x0∈ℛ𝑛  is an equilibrium point of the system (4) if  

 

A(x0) = 0    (5) 

 

Without loss of generality, assume that x0= 0 is an equilibrium 

point of the system (4); that is, A(0)= 0. Otherwise we can 

perform a simple state transformation z = x-x0 to obtain a new 

state equation 

 

𝑧 = 𝐴  𝑧 = 𝐴 𝑧 + 𝑥0    (6) 

 

Where z0= 0 is an equilibrium point (𝐴  0 = 𝐴 𝑥0 = 0). 

Clearly, the solution of the differential equation (4) shows that 

if x (0) = 0, then x(t) = 0, for all t >0. However, this solution 

may or may not be stable [4]. 
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3.3. Stability 

 

The equilibrium point x0= 0 of the system (4) is stable if for 

all 𝜀>0, there exists a 𝛿𝜀>0 such that 

 

 𝑥 0  < 𝛿𝜀 ⇒  𝑥 𝑡  < 𝜀  ∀𝑡 ≥ 0  (7) 

 

3.4. Controller for Nonlinear Systems 

 

We consider the nonlinear system 

 

x = f𝑥 + 𝐵𝑢𝑢    (8) 

 

𝑦 = 𝐶𝑦𝑥     (9) 

 

Where x: ℛ+ → ℛ𝑛  is the state variable, u: ℛ+ → ℛ𝑛  is the 

control variable, and y: ℛ +→ ℛ𝑞   is the measured or sensed 

variable. We assume the function f: ℛ𝑛 → ℛ𝑛  satisfies f(0) = 

0 and 

 
𝜕𝑓

𝜕𝑥
𝜖𝐶0 𝐴1 ………𝐴𝑚      (10) 

 

Where A1,……,Am are given. Looking for a stabilizing 

controller of the form 

 

𝑥  = 𝑓 𝑥  + 𝐵𝑢𝑢 + 𝐿 𝐶𝑦𝑥 − 𝑦 ,   𝑢 = 𝐾𝑥   (11) 

 

The matrix K is estimated-state feedback gain and L (the 

observer gain) such that the closed-loop system is stable [4]. 

 

 
𝑥 
𝑥  
 =  

𝑓 𝑥 + 𝐵𝑢𝐾𝑥 

−𝐿𝐶𝑦𝑥 + 𝑓 𝑥  +  𝐵𝑢𝐾 + 𝐿𝐶𝑦 𝑥 
   (12) 

 

The closed-loop system (12) is stable if it is quadratically 

stable, which is true if there exists a positive-definite matrix 

𝑃 𝜖ℛ2𝑛𝑥2𝑛  such that for any nonzero trajectory 𝑥, 𝑥 ,  we have: 

 
𝜕

𝜕𝑡
 
𝑥
𝑥 
 
𝑇

𝑃  
𝑥
𝑥 
 < 0    (13) 

 

That is true if there exist P, Q, Y, and W such that the LMIs 

 

𝑄 > 0, 
 

𝐴𝑖𝑄 + 𝑄𝐴𝑖
𝑇 + 𝐵𝑢𝑌 + 𝑌𝑇𝐵𝑢

𝑇 < 0   (14) 

 

𝑖 = 1, …… , 𝑀 

And 𝑃 > 0 

 

𝐴𝑖
𝑇𝑃 + 𝑃𝐴𝑖 + 𝑊𝐶𝑦 + 𝐶𝑦

𝑇𝑊𝑇 < 0   (15) 

 

𝑖 = 1, …… , 𝑀 

 

To every P, Q, Y and W satisfying these LMIs, there 

corresponds a stabilizing controller of the form (11), obtained 

by setting K = Y Q
-1

 and    L = P
-1

W. We can obtain 

equivalent conditions in which the variables Y and W do not 

appear. These conditions are that some P > 0 and Q > 0 satisfy 

for some 𝜍and𝜇. 

𝐴𝑖𝑄 + 𝑄𝐴𝑖
𝑇 < 𝜍𝐵𝑢𝐵𝑢

𝑇 , 𝑖 = 1, … , 𝑀  (16) 

 

and 

 

𝐴𝑖
𝑇𝑃 + 𝑃𝐴𝑖 < 𝜇𝐶𝑦

𝑇𝐶𝑦 ,𝑖 = 1, … . , 𝑀  (17) 

 

By homogeneity can freely set 𝜍 = 𝜇 = 1. For any P > 0, Q > 0 

satisfying  [9]. 

 

3.5. Optimal Control 

 

After stabilizing a system, the next thing is to optimize the 

system performance. This topic is not only important in its 

own right, but also serves as the basis of our optimal control 

approach to robust control design. The formulation an optimal 

control problem for a general nonlinear system 

 

x = f(𝑥, 𝑢)    (18) 

 

so as to minimizing the following cost functional the 

Hamilton–Jacobi–Bellman equation 

 

𝐽 𝑥, 𝑢 =  𝐿(𝑥, 𝑢)
𝑡𝑓
𝑡

𝑑𝜏   (19) 

 

Where t is the current time, tfis the terminating time, x = x(t) is 

the current state, and L(x, u) characterizes the cost objective. 

 

3.6. Optimal Control Approach 

 

The main focus of this paper is the optimal control approach 

to robust control design. To discuss this approach, we present 

the optimal control approach for linear systems. The system to 

be controlled is described by 

 

x = A 𝜌 𝑥 + 𝐵𝑢    (20) 

 

Where p represents uncertainty.  The goal is to design a state 

feedback to stabilize the system for all possible p within given 

bounds. The solution to this robust problem depends on 

whether the uncertainty satisfies a matching condition, which 

requires that the uncertainty is within the range of B. If the 

uncertainty satisfies the matching condition, then the solution 

to the robust control problem always exists and can be 

obtained easily [10]. 

 

3.7.H∞ and H2 control 

 

In particular, H∞denotes the Banach space of all complex 

valued functions F: C→C that are analytic and bounded in the 

open right half of the complex plane and are bounded on the 

imaginary axis jR with its H∞norm defined as 

 

 𝐹 ∞ =
𝑠𝑢𝑝

𝜔 ∈ 𝑅
 𝐹 𝑗𝜔     (21) 

 

H2 denotes the Hilbert space of all complex valued functions 

F: C→C that are analytic and bounded in the open right half 

of the complex plane, and the following integral is bounded 

 

 𝐹 𝑖𝜔         ∞

−∞
𝐹 𝑗𝜔 𝑑𝜔 < ∞   (22) 
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The H2 norm can then be defined as 

 

 𝐹 2 =  
1

2𝜋
 𝐹 𝑖𝜔         ∞

−∞
𝐹 𝑗𝜔 𝑑𝜔   (23) 

Closed-loop system is stable if the H∞ norm of the loop is less 

than one. From the small-gain theorem, we can determine the 

bounds on the uncertainty that guarantee the stability of the 

perturbed system [11]. 

4. SIMULATION RESULTS 

The application of robust decentralized dynamic output 

control design approaches to control system of Sudan grid, 

which consists of 41 generators and 167 bus bars specifically 

control to study the fundamental behavior of large 

interconnected power systems including inter-area oscillations 

[12]. Each generator is equipped with standard exciter and 

governor controllers. The parameters for the standard exciter 

and governor controllers used in the simulation were taken 

from Electrical and distribution companies. All generators for 

these simulations represented by their fifth-order models with 

rated terminal voltage of 10.5 kV, 11 kV and 13.8 kV. Speed 

signals from each generator are used for robust decentralized 

dynamic output control through the excitation systems. The 

load condition at transmission line (Khartoum-Kuku) of [PL1= 

104 MW, QL1= 56 MVar]. The former system describes as a 

hierarchical interconnection of 41subsystems; the latter 

represents the interactions among the subsystems. In each 

subsystem the controller structure was augmenting. The 

minimization problem was formulated by applying power 

system stabilizer of linear objective function involving LMIs 

and coupling BMI constraints.  Each subsystem was applied 

robust (sub)-optimal decentralized second-order PSS, for a 

relative accuracy of ε = 10
−6

. Speed signals from each 

generator and the outputs of the PSS, together with the 

terminal voltage error signals, which are the input to the 

regulator of the exciter, are used as regulated signals within 

this power system stabilizer framework. The main focus of 

this paper is the optimal control approach to robust control 

design. The complex of control system is used to control 

nonlinear system. A transfer function is used to describe the 

input and output relation of a system and hence serves as a 

model of the system.  

 

The result of application shown in Figs 3-15 taken by 

applying Symmetrical fault at transmission line near bus bars 

28-63, The transient responses of generators on Marrwi 

electrical-station with and without the PSSs in the system are 

an example. To further assess the effectiveness of the 

proposed approaches regarding the robustness, the transient 

performance indices were computed for constant total load in 

the system. The test of robust decentralized dynamic output 

control design approaches, applied by Bode diagram are 

shown in Fig 3, multivariable frequency responses are shown 

in Fig 4, and root locus with feedback gain are shown in Fig 

5, root locus without PSSs are shown in Fig 6 and root locus 

with PSSs are shown in Fig 7. 

 

The transient performance indices for compass of rotor angle 

terms of inter-area mode without and with is shown in Figs. 8 

and 9, respectively, all bus magnitude voltage without and 

with PSSs is shown in Figs 10 and 11, respectively, generator 

angle θgi is shown in Fig 12, generator speed deviation ωgi is 

shown in Fig 13,  generator power Pgi is shown in Fig 14,  

generator terminal voltages Vti Fig 15,  at transmission line 

near bus bars 28-63, are computed using the Matlab Power 

System Toolbox. These transient performance indices are 

used as a qualitative measure of system behavior following 

any disturbances including controller actions. Moreover, for 

comparison purpose, these indices are normalized to the base 

operating condition for which the controllers have been 

designed: 

 

Fig. 3. Bode diagram of a power system stabilizer's frequency 

response 

 

Fig. 4. Multivariable frequency responses of Sudan Grid 
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Fig. 5.Root locus with feedback gain 

 

 

Fig. 6.Calculated modes of Marrwi hydro-turbine without PSS 

 

Fig. 7.Calculated modes of Marrwi hydro-turbine with PSS 

 
 

Fig.8. Compass of rotor angle terms of inter-area mode 

eigenvector of Marrwi hydro-turbine without PSS at fault 

 

Fig. 9.Compass of rotor angle terms of inter-area mode 

eigenvector of Marrwi hydro-turbine with PSS at fault 

 

Fig. 10.All bus magnitude voltage without PSS at fault 

 

Fig. 11.All bus magnitude voltage with PSS at fault 

 

Fig. 12.Machine angle of Marrwi hydro-turbine without and 

with PSS at fault 
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Fig. 13.Generator speed deviation of Marrwi hydro-turbine 

without and with PSS at fault 

 

Fig. 14. Generator electrical power of Marrwi hydro-turbine 

without and with PSS at fault 

Fig. 15. Generator voltage of Marrwi hydro-turbine without 

and with PSS at fault 

5. CONCLUSIONS 

The PSS controller is a supervisory level controller that can 

track system inter-area dynamics online. The application of 

PSS controller design aims to improve the damping of inter-

area oscillations. One of the primary requirements of a good 

decentralized application is that the resulting PSS should be 

robust enough to wide variations in system parameters, at the 

same time being computationally manageable.  

The uncertainty of the dynamics in the internal and external 

systems produced the global decoupled control subsystem 

structure that not only breaks the system into decoupled 

subsystems but also provides a single effective control that is 

not vulnerable to disturbances or competition from other 

controls. 

 

This paper examines several tests of application PSS for 

damping power system swings. A model of the Sudan system 

with more PSSs for stabilization, is used as the test system. It 

is found that decentralized controllers provide good damping 

enhancement to the interarea modes. The robust control has 

also been tested for symmetrical fault, and has performed 

well. The resulting PSS can guarantee the stability and 

performance over a large range of plants with arbitrarily fast 

changing parameters. The nonlinear simulations show that 

these independently designed decentralized PSSs cooperate 

well in a wide operating range and have better damping 

characteristics.  The PSS performance was tested and 

simulated on a 41 generator, 167 buses system, and Marawi 

electrical plant was taken as an example. The testing of this 

system showed positive results. The LMI controller worked 

well and provided a reasonable amount of damping to the 

inter-area modes.  

The optimal control stability by using PSS control design 

technique is based on state space theory, stability and 

Lyapunov theory and optimal control theory. Simulation 

results presented in section IV show that the proposed design 

is robust and its objectives are met for the investigated 

systems. 
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