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Abstract: Proper integration and evaluation of an existing vertical control information with the adjustment of a new
leveling network require a stepwise approach that could reveal the hidden aspects of their uncertainties or stochastic
properties. The general use of the control information as fixed quantities in the adjustment of the leveling networks is
a major flaw. To this end, the fundamental concepts of least squares solutions offer a flexible and a rich framework for
proper integration and modeling of control information and their uncertainty for new leveling networks. This paper
provides a comprehensive review and analysis of a workflow that can be used to integrate and evaluate the existing
control information or benchmarks to a new leveling network. In particular, this paper exploits three different
approaches of least squares solutions to integrate and evaluate the stochastic properties of the existing control
information and observations that belong to a new network. First, ordinary least squares solution, which constrained
by Gauss-Markov model, was exploited to depict the normal practice of leveling networks adjustment in which the
control information will be introduced as constant or fixed values. Second, least squares solution with pseudo
observations was exploited for proper integration of control information and their stochastic properties. Third, free-
network least squares solution was exploited as a mechanism to separate and quantify the stochastic properties of the
observations from the ones that will be associated with the control information. Through the use of a numerical
example, this paper offers some new perspectives and a detailed analysis that explains the interplay between the
different aspects of least squares solutions for the integration and evaluation of vertical control information and their

uncertainties with new leveling networks.
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1. INTRODUCTION

Although the adjustment of leveling networks is a classical
topic and practice in the surveying works, proper integration
and evaluation of an existing vertical control information or
the values of benchmarks to a new network is not a trivial
task and is not deeply understood. Surprisingly enough, this
lack of understanding exists at the conceptual and the
practical levels. In one hand, this lack of understanding may
be explained by the way in which the subject of adjustment
computations was taught. On the other hand, this lack of
understanding may be explained by the weak relationship
between the professional practice and the advanced concepts
of modeling uncertainties in the general framework of least
squares solutions. For example, handling or integrating the
control information as fixed values to a new leveling network
will ignore their uncertainties or stochastic properties.
Specifically, it will ignore the stochastic interplay between
the new observations and the existing control information in
terms of exchanging the benefit of accuracy improvement
among each other. As such, the new leveling network could

be viewed as a local or isolated network since it does not
acquire the stochastic properties of the existing benchmark/s.
In other words, the new network will not be correctly tied or
unified with the existing control information or network and
it will miss the opportunity of proper information update and
integration. This is equally true for adjustment by observation
and condition equations. In fact, this is more true and obvious
for the condition equations since their formulation are
completely dependent on local constraints between the
observations that do not include any knowledge about the
existing control information. This is not the first paper to
address this issue. For example, more than two decades ago
Schwarz [1] addressed the same issue in the context of GPS
network adjustment and update, which is very similar to the
issue of the leveling network, which will be addressed in this

paper.

As is well known and from theoretical proofs, proper
weighting of the least squares solution of a leveling network
is inversely proportional to the distances between the leveling
points or the height difference between pairs of points [2]. In
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other words, the uncertainties or the relative contribution of
different observations in the least squares solution of the
leveling networks are expressed in terms of distances.
Sometimes the uncertainties of the existing vertical control
information are expressed in terms of their standard
deviations or variances, which were estimated from their
previous dispersion or variance-covariance matrices.
Although this type of expression or representation of
uncertainties is very common, it makes the integration of the
uncertainties of the existing vertical control information to a
new leveling network a non-trivial task and creates a
numerical imbalance among the elements of the weight
matrix that will be used to solve for the parameters of the
new leveling network. In particular, this representation may
generate a very large reference variance or variance
component, which may give a wrong message or indication
about the quality of the obtained solution from the least
squares in terms of its global fit. Therefore, the standard
deviations of the control information, which were obtained
from a previous adjustment, should be transformed to their
equivalent distances for proper inclusion or integration to the
least squares solution of new leveling networks. In addition
and as a recommendation, the representation of the
uncertainties of the benchmark values should be extended to
include the standard deviations as well as the distances that
were used to build their previous weighting matrices.

This paper argues that proper integration and evaluation of an
existing vertical control information with the adjustment of a
new leveling network require a stepwise approach that could
reveal the hidden aspects of their uncertainties or stochastic
properties. To this end, the fundamental concepts of least
squares solutions offer a flexible and a rich framework for
proper integration and modeling of control information and
their uncertainty for new leveling networks. This paper
provides a comprehensive review and analysis of a workflow
that can be used to integrate and evaluate the control
information or benchmarks values to new leveling networks.
In particular, this paper exploits three different approaches of
least squares solutions to integrate and evaluate the stochastic
properties of the control information and observations of a
new leveling network. First, ordinary least squares solution,
which will be constrained by linear Gauss-Markov model,
was exploited to depict the normal practice of leveling
networks adjustment in which the control information will be
introduced as constants or fixed values. In other words, the
first approach ignores the stochastic properties of the control
information and leaves the new leveling network defined in a
local vertical datum or isolated from the existing network.
More importantly, the first approach will serve as a baseline
for comparison with the other two approaches. Second, least
squares solution with pseudo observations was exploited for
proper integration of control information and their stochastic
properties to a new leveling network. The second approach
offers a very elegant framework for the inclusion of the
stochastic properties of the control information as well as the
ones of new observations in one unified framework that
mimic the original Gauss-Markov model. Moreover, it avoids
the special handling of the stochastic properties of the control
information (Benchmarks) if their uncertainties were
modeled within the normal representation of ordinary least

squares solution or a modified Gauss-Markov Model with
error propagation in which the uncertainties of the control
information will be part of a restricted weight matrix. This
weight matrix will have the same size of the given weight
matrix of the observations of the new leveling network.
Although there is some reservation against the least squares
with pseudo observations for large data sets [3], this
reservation can be handled, for example, by sequential
adjustment. Third, a free-network least squares solution was
exploited as a mechanism to separate and quantify the
stochastic properties of the observations from the ones that
will be associated with the control information. In particular,
the uniqueness of the reference variance or the variance
component will be used as a measure for the global fit and
quality control of the stochastic properties of the observations
in a new leveling network.

This paper is organized as follows. Section two provides a
detailed review for the three approaches of least squares
solution that will be used in the test example. Section three
explains the research methodology of this work. Section four
shows the test example and its relevant data that will be used
to demonstrate the argument of this paper. Section five
presents the results and analysis of the test example. Section
six concludes the paper with some recommendations.

2. LEAST SQUARES MODELING

As stated, this paper exploits three different approaches of least
squares solutions to integrate and evaluate the stochastic
properties of the existing control information and new
observations. Namely, it exploits ordinary least squares solution
or linear Gauss-Markov model, least squares solution with
pseudo observations, and Free-network least squares solution.

During the discussion in this section, the simulated leveling
network shown in Fig. 1 will be used to explain the different
aspects of the three approaches of the least squares solutions.
Table 1 shows the relevant data of the simulated leveling
network in terms of the observed difference in heights (y, ...,
y,) between points (H1, H2, H3, H4), the distances (L, ..., Ls)
between points, and the standard deviations of each observation
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Y1

H2
Fig. 1. A simulated leveling network

Table 1. Relevant data for the simulated example
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Observation Distance Between Standard
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The general formulation of Gauss-Markov model that

constrains the ordinary least squares solution is typically
depicted by the following equation:
Ya = Anméma +€nas €~ (0, O-gpil) 1)
where: Y: Observations vector (here: differences in
elevations between points pairs).
n : Number of observations.
m : Number of unknowns or parameters (here: heights
of points).
A : Design matrix.
& : Unknown parameters.

e : True error vector.
2 . .
o, - Unit reference variance.

Pnxn : A diagonal weight matrix for the observations
vector (Y).

The target function for the least squares solution, which is
constrained by Gauss-Markov model shown in Equation 1 is:
O(e,4,&) =e" Pe+2A" (Y — A& —e) (2.a)
It should be noted that the target function in equation (2.a) is
expressed in terms of Lagrange multiplier vector ( A ).
Practically, Lagrange multipliers offer an automatic mechanism
for direct accommodation or inclusion of the constraint/s with a
given function [4]. Equation (2.b) offers another representation
for the target function that does not include the Lagrange
multiplier vector and the error vector (e). In other words, it
gives a direct minimization of the squared weighted error in
terms of the observation vector (), the design matrix (A), the
weight matrix (P) and the unknown parameters vector (&)

and it restricts the minimization process to the parameters
vector.

D(E) = (Y —AE)T P(Y - Af) (2.b)

where: @ : Target function to be minimized with respect to
(e,4,&)in2aor (&) in2.b.
A Lagrange multiplier.

The manipulation of the target function shown in (2.a or 2.b)
by the minimization process will lead to the following set of
equations:

%: (ATPA)LATPY (3)
Nt C

e=Y — AZ

4
) _T -~

oo = ‘;_Pnf ©)
D{ =N (6.

A/\ N 2

D{&}=00 N (6.b)

where: & : Estimated parameters vector.

n

D{&}: Dispersion or variance co-variance matrix of
the unknown parameters.

€ : Predicted residuals vector.

A2

oo : Estimated
component.

n : Number of observations or equations.

m : Number of unknown parameters or observation's
equations.

r :redundancy number.

N : Normal matrix.

reference variance or variance

Equation 6.a captures the geometry in terms of the connectivity
and directions of the nodes in the leveling network before
applying the scaling by the estimated variance component
shown in Equation 5. Therefore, it is called the a priori
dispersion or variance-covariance matrix. This matrix can be
computed before the commencement of the field work since its
elements consists of constant values (-1, 0, 1) and an assumed
variance of the observations, which can be specified with high
confidence in advance. Equation (6.b) captures the geometry of
the leveling network after the field work since its definition
depends on the estimated reference variance or variance
component from the adjustment process.

v, [-1 1 0 o0

Hl
Y -1 0 1 0 Y
ysl=|0 -1 1 0 HZ + €5, @
yal [0 -1 0 1 H3
lys| |0 0 -1 1] *°
e

It is very simple to observe that the design matrix A has a
rank deficiency or dependency of one, which can be checked
by adding the third and the fifth row to generate the fourth
row. Let us fix the height of the fourth point (H,) to remove
the rank deficiency in the design matrix A. By doing this, the
fourth column in the design matrix will be removed and
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added to the vector of observations Y. Therefore, Equation 7
can be rewritten as follows:

yy-0 1 [-1 1 0
y,-0 | |-1 0 1[H,
y3=0 |=| 0 -1 1 |H;|+e5y ®)
ya—H,| |0 -1 0|H;
lvs—Hs| [0 0 -1] %
Y A

By moving H, to the left hand side of Equation 8, a big
assumption was made. H, is treated as a fixed quantity or
constant value, which is a safe assumption for a local leveling
network. Local networks are used for measurement in
confined engineering projects such as stakeout of buildings or
earthwork computations. On the other hand, this is not a
correct assumption when the new network is to be tied to an
existing or national leveling network. In fact, even in
engineering projects that require absolute measurement for
deformation, for example, in dams and bridges, the concept of
local network is not an adequate one since it will not account
for the stochastic properties of the previous measurements. In
general, H, or any other point in the network could belong to
an existing leveling network and their values will be
associated with some figures of accuracy or standard
deviations. Therefore, ignoring the stochastic properties of H,
or any other point will render the network work shown in
Figure 1 as a local network and will it not be correctly tied to
the existing leveling network.

Gauss-Markov model with pseudo-observations can be used
for proper integration of the stochastic properties of the
existing control information. The model shown in (7) will be
modified and extended to realize the given control
information as a pseudo-observation in which H,; will be
treated as an unknown parameter as well as an observation.
As shown in equation (9), the given value of H, will be an
element of the observation vector Y. The rank deficiency in
design matrix (A) will be removed by adding a pseudo
observation for H, as a new row in the design matrix (A) as
shown in equation (9) and H, appears as an element in the
unknown parameters vector (& ). In general, the least squares

solution with pseudo observations transforms the control
information into unknown parameter/s and uses their prior
knowledge or values to construct a stochastic constraint to
overcome the rank deficiency of the design matrix (A). As
such, the least squares solution with pseudo observations can
be seen as a special case of the generalized inverse solution.

vy | [-1 1 0 0]
Y| [-1 0 1 OfH,
0 -1 1 0fH,| (e
Y3 _ 2 5x1 )
Yo | |0 -1 0 1|Hz| |&p
ys | |0 0 -1 1|H,
(H7] [0 0 0 1|¢
S
Y A
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The free network solution of the least squares deals with the
problem of the generalized inverse of a rank deficient matrix
(A) [5]. Although the generalized inverse does not give a
unique solution for the unknown parameters [6], the reference
variance or the variance component shown in equation (6) is
unique. In other words, the estimated value of the variance
component does not depend on which generalized inverse that
was used to estimate the unknown parameters. The
uniqueness of the variance component will be exploited in
this paper to separate the stochastic properties of the new
observations from the ones that will be associated with the
existing control information. Although the same process of
errors separation can be obtained by the use of condition
equations, it is beyond the scope of this paper.

The unique minimum-norm condition or inner constraints [7]
can be used to get an optimal or unique least square solution.
In other words, the minimum-norm solution will give the
smallest standard deviations for the unknown parameters of
the leveling network. The estimated parameters in the free
network solution can be obtained by:

n

E=(ATPA+D'D)TATPY (10)
The matrix D should satisfy:
DE=0 (11)

The structure of the matrix D, which contains the elements of
the inner constraints, depends on the structure of the design
matrix A or the geometric configuration of the leveling
network. For a leveling network and as shown in Equation 11,
an inner constraint forces the average heights of all unknown
parameters in the network to remain unchanged or their sum
is equal to zero. Mathematically, the inner constraint/s in the
form of the D matrix can be derived by the use of the
similarity transformation or S-transformation for short [7]. As
such, it should be noted that the inner constraint/s will derived
by a functional relationship that is not part of the target
function of the least squares minimization process. The least
squares solution only enforces the constraints shown in
Equations 1 and 11. Therefore, the free network solution in
the context of the minimum-norm is a two steps process.
First, is to identify the structure of the minimum constraint/s.
Second, is to apply the least squares minimization process.
This type of clarification is very critical for proper
understanding and implementation of the least squares
solutions. In fact, this clarification will lead us to the
differentiation between minimum constraint/s and inner
constraint/s. Inner constraint/s have to do with the minimum-
norm solution and this is not the case for general definition of
the minimum constraint/s.

Now we turn our attention on how to convert the standard
deviations of existing control points into distances. In general,
the uncertainties or the relative contribution of different
observations in the least squares solution of the leveling
networks are expressed in terms of distances [2]. Sometimes
the uncertainties of the existing control information are
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expressed in terms of their standard deviations, which were
estimated from their previous dispersion or variance-
covariance matrices. Although this type of expression or
representation of uncertainties is very common, it makes the
integration of the uncertainties of the control information to a
new network a non-trivial task. To this end, the standard
deviation of each observation in a new leveling network can
be converted to its equivalent distance by the following
relationship:

<[]

where: K : Distance in km.
m : A constant that is directly related to the order of
the survey.
o . The given standard deviation of an existing
control point in mm.

(12)

Table 2 shows the US Federal Geodetic Control
Subcommittee (FGCS) vertical control survey accuracy
standards by which we can convert the standard deviation of
existing control points into distances and introduce them in
the weight matrix of the least squares solution [8]. Yes
indeed, this conversion will come at the cost of knowing the
order and the class of the survey.

Equation 12 should be used with a very special care since its
conception is based on empirical findings and it is not directly
connected to the variance-covariance matrices shown in (6.a
or 6.b). In other words, Equation 12 expresses the misclosure
between two leveling points as a function of a distance and
some constant factor (m) that encapsulates the overall
ecosystem of the measurement process. In particular,
Equation 12 does not capture the geometry of the leveling
network, which will be expressed by the normal matrix (N)
that was shown in Equations 6.a and 6.b. In bold terms, it has
nothing to do with the geometry of the leveling network. In
fact, it can be said that there is a knowledge gap that could
explain the connection or the link between the empirical
formula shown in Equation 12 and the theoretical accuracy
shown in Equations 6.a and 6.b. This gap warrants a future
investigation to generalize and validate the equivalency
between the accuracy figures of points pairs that can be
obtained by Equation 12 and the ones that will be encountered
in the leveling network as a function of the variance-
covariance matrix.

Table 2. 1984 FGCS Vertical Control Survey Accuracy

Standards
Order and Class + o (mm)
First Order: Precise Leveling
Class | 05xK
Class I 0.7x K
Second Order: For Engineering Works
Class | 1.0xVK
Class Il 13xJK
Third Order 20xVK

3.
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MATERIALS AND METHODS

The research methodology is based on a gradual testing of
different scenarios on a simple example to clarify the
conceptual and the practical aspects of the adjustment of
leveling networks. These scenarios will be given in section
five. The overall objective of these scenarios is to
demonstrate the main argument of this paper, which states
that:

"Proper integration and evaluation of vertical control
information with the adjustment of a new leveling network
require a stepwise approach that could reveal the hidden
aspects of their uncertainties or stochastic properties”

The principles of least squares solutions that were shown in
the previous section will be used in this testing. In particular,
the research methodology will investigate the following
issues:

Different weighting schemes. Four different types of
weighting will be tested.

Different scenarios for the use of the control
information.

The three approaches of least squares solutions.

3.1 Test Example

Fig. 2 shows the layout of the topology of the test example
for a leveling network, which consists of two known control
points (BM X=100.00 m and BM Y=107.50 m), three
unknown points (A, B, and C) and seven observations. This
example was presented in [2] and it was chosen in this
research to share a common test bed for the ideas presented in
this paper. All units of this example were set on the metric
system since the overall comparisons in the carried tests will
be based on their relative values. Table 3 shows the relevant
data for the example shown in Figure 2. It is important to note
that this is an over constrained network since it uses two
control points (BM X and BM Y). BM X and BM Y were
assigned an identical standard deviation (£ 0.004 m) and
distance (8.5 km) for the use in the weight matrix during the
parameters estimation process by least squares.

In general, only one control point is needed to constrain or to
remove the rank deficiency or to fix the datum problem of
leveling network. The provision of one control point can be
seen as a minimum external constraint in light of the free
network solution. The availability of two control points will
give us the opportunity to use each one of them can serve the
dual role of a control point as well as a check point. This type
of use will be utilized to compare internal accuracy of the
least squares solution, which will be computed from variance-
covariance matrix shown in Equation 6.b, with the external
accuracy in terms of root-mean-square-error (RMSE). The
RMSE will be obtained from the comparison between the
given value of the control information (here: BM X and BM
Y) and their estimated values from the least squares solution.
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BM X=100.00

BM Y=107.50

Fig. 2. Layout for the test example

Table 3. Data for the test example

Line Observed Length Standard
Elevation (km) Deviation
Differences (m)
1 5.1000 4 +0.006
2 2.3400 3 +0.005
3 -1.2500 2 +0.003
4 -6.1300 3 +0.005
5 -0.6800 2 +0.003
6 -3.0000 2 +0.003
7 1.7000 2 +0.003

4. RESULTS AND DISSCUSSION

In this work, thirteen cases were tested and analyzed. These
cases were designed to cover the three approaches of the least
squares solutions that were proposed in this paper. Table 4
shows the explanation of each case. Table 5 lists the
numerical results for each case shown in Table 4. A
MATLAB prototype software was developed to carry out the
proposed tests that were outlined in Table 4.

Fig. 3 shows a plot of the variance components for the
thirteen cases in which there are two anomalies (cases no. 3
and 10). The highest values were obtained by the use of the
standard deviations in the weight matrix for cases no. 3 and
10. For more information please check Tables 4 and 5.
Clearly, these high values suggest that the use of the standard
deviations in the weight matrix is not an optimal strategy to
reflect the contributions of different observations in a global
model fitting in terms of the variance component.

In the first case, an un-weighted or equal weighted linear
Gauss-Markov Model by an identity weight matrix was used.
Except for cases no. 3 and 10, case no. 1 has the highest
variance component value (0.0025), which suggests that an un-
weighted or weighting by an identity matrix is a sub-optimal
strategy for weighting but is not a bad choice and this is even
with the availability of the uncertainties in terms of standard
deviation as suggested by the discussion in cases no. 3 and 10.
In case no. 2, the variance component was improved by a factor
of 2.5 (0.001) since the given distances shown in Table 3 were

used to construct the weight matrix. This finding complies with
theoretical proofs of weighting by distances [2] between
leveling points. In addition, there are no major differences
between the accuracy of the estimated parameters (A, B, C) in
cases no. 1 and 2, which suggests that the variance component
has a very minor influence on the dispersion or the variance-
covariance matrix. In fact this issue requires a deeper
investigation in a separate paper to understand and analyze the
impact of the weight matrix on the derived parameters and
information from least squares solutions.

Although case no. 3 has the highest value of the variance
component, surprisingly enough it induced an improvement in
the estimated accuracy of B and C and this is in comparison
with the ones that were obtained from case no. 2, which uses
the optimal weighting by distances. Therefore, the notion of
optimal weighting by distances is not a global one. Yes, the
values of the estimated parameters were changed between cases
no. 2 and 3. Ones again, this finding supports the requirement
for a further investigation to understand the impact of different
weighting schemes on the derived information and parameters
from least squares solutions.

In case no. 4, normalized distances were used to construct the
weight matrix. In particular, all distances shown in Table 3
were divided by their minimum value (2). Division by the
minimum distance was used to comply with the notion of
giving more weight to the smallest distance since it should
contribute by a higher value in the weight matrix. The only
difference between cases no. 2 and 4 is the doubling of the
variance component since it went from 0.001 in case no. 2 to
0.0019 in case no. 4. On the other hand, the values of the

Table 4. Test cases

Case Explanation

No.

1 Un-weighted: linear Gauss-Markov Model

2 Weighted by distances: linear Gauss-Markov

Model
3 Weighted by variance: linear Gauss-Markov Model

4 Weighted by normalized distance: linear Gauss-
Markov Model
5 Un-weighted: linear Gauss-Markov Model in

which BM Y is unknown

6 Un-weighted linear Gauss-Markov Model in which
BM X is unknown

7  Weighted by distance: linear Gauss-Markov Model
in which BM X is unknown

8 Un-weighted: linear Gauss-Markov Model with
Pseudo Observations

9  Weighted by distance: linear Gauss-Markov Model
with Pseudo Observations

10  Weighted by variance: linear Gauss-Markov Model
with Pseudo Observations

11  Un-weighted: Free-Network Solution Using D,
matrix

12 Un-weighted: Free-Network Solution Using D,
matrix

13 Weighted by distances: Free-Network Solution

Using D; matrix
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estimated parameters (A, B, C) and their accuracies remain
the same. This suggests that the normalization does not
impact the estimated parameters and its impact was cancelled
from the  variance-covariance  matrix.  Therefore,
normalization as shown in this case does not provide an
advantage over the classical or the regular weighting by the
pure inverse of the distances. On the contrary, it may harm
the solution in terms of giving a higher value for the variance
component or the reference variance.

In cases no. 5, 6, and 7 only one benchmark value or control
point was used to constrain the least squares solution and the
other one was estimated as an unknown parameter. The main
purpose of these three tests is to understand the impact of
each control point on the global accuracy in terms of the
variance component and the parameters accuracy in terms of
their standard deviations. In general, these three cases exploit
the idea of check points or the general notion of cross-
validation. It should be noted that cases no. 5 and 6 use un-
weighted or identity weight matrix for the least squares
solution.

In case no. 5 BM X (100) was used as a fixed or constant
control point without using its stochastic properties and BM
Y (107.5) was introduced as an unknown parameter in the
least squares solution. In this case the variance component
was improved by an order of magnitude (0.0005) in light of
the previous cases (1, 2, and 4). Also the standard deviations
of the three parameters (A, B, C) were improved. More
importantly, BM Y has an accuracy figure of (= 0.021) and
an estimated value of (107.414), which is different from its
given value (107.5) by 0.086. This difference can be viewed
as an external accuracy for this particular point (BM Y). It
should be noted that the internal accuracy of BM Y (=%
0.021) does not predict its external accuracy (0.086). In
general, this case reveals that the use of one control point
(BM X) improve the global fit in terms of the variance
component as well as the accuracy of A, B, and C.

In case no. 6, BM Y (107.5) was used as a fixed or constant
control point in a similar way as we did for BM X in case no.
5. Similar variance component and standard deviations for the
parameters were obtained for this case as the ones that were
obtained for case no. 5. Moreover, it is very interesting to
note that similar external (0.086) and internal (= 0.021)
accuracies were obtained for BM X as the ones that were
obtained for BM Y in case no. 5. This suggests that there is
no reason to prefer one point over the other to serve as a fixed
control information to constrain the least squares solution.
Either one of them could equally play the role of acceptable
control information to constrain the least squares solution.

In case no. 7, the least squares solution was weighted by the
distances shown in Table 3. This weighting scheme generates
a smaller variance component (0.0002) when compared with
the ones that were obtained for cases no. 5 and 6 (0.0005).
This decreased in the variance component can be viewed as a
positive sign for the use of the distance for least squares
weighting. On the other hand, comparable accuracy figures
were obtained as the ones that were derived for cases no. 5
and 6.

31

Cases no. 8, 9, and 10 demonstrate the use of the Gauss-
Markov with pseudo observations, which provides a proper
handling for the stochastic properties of the new observations
and the given ones for control information. The control
information (here BM X and BM Y) will be introduced as
unknowns in the design matrix (A) and this matrix will
become a rank deficient. This rank deficiency was removed
by adding two rows or constraints to the design matrix (A). In
the least squares solutions these constraints will be integrated
with their associated weights. The addition of the pseudo
observations can be viewed as prior knowledge with
uncertainties or stochastic constraints. In these three cases (8,
9, and 10), three different weighting approaches were tested,
namely, un-weighted, weighting by distance, and weighting
by variances.

In case no. 8, which is un-weighted solution or equally
weighted by an identity matrix, the variance component
(0.001) is a little bit higher by an order of a magnitude than
the one that was obtained for case no. 7 (0.0002). In light of
the previous cases, this is an expected result for the variance
component since the un-weighted solutions gave higher
variance components when compared with the ones that were
weighted by distances. Similar to cases no. 5 and 6, BM X
and BM Y have equal standard deviations (0.024) but a little
bit larger than the ones in the stated cases (0.021). It is very
interesting to observe that the internal accuracy in terms of
the standard deviations for BM X and BM Y are very close to
their external accuracy since their estimated values (100.030
and 107.470) are differing from their given values (100.00
and 107.50) by very close amounts from the ones that were
obtained from the lease squares solution. In other words and
with proper modeling of the control information, the least
squares internal accuracy can predict its external accuracy.

Case no. 9, which is weighted by distances, shows a dramatic
improvement in the variance component by an order of
magnitude. It went from (0.001) in case no. 8 to (0.0003) in
case no. 9. On the other hand, there is an increase in the
standard deviations of the estimated parameters (A, B, C, BM
X, and BM Y).

In case no. 10, which is weighted by the variances of the
observations and the control information, a very large
variance component was obtained. On the other hand, very
reasonable results were obtained for the standard deviations
of the estimated parameters. Surprisingly enough, in this case
the internal accuracy or the standard deviations (% 0.029)
from the least squares solution for the two control points (BM
X and BM Y) gives a perfect prediction for their external
accuracy since they differ by the same amount from their
given values.

Cases no. 11, 12, and 13 demonstrate the use of free-network
solution for the leveling network. Cases no. 11 and 13 use the
minimum-norm or the inner's constraint solution, which is
expressed by the D; matrix. This matrix has the following
structure:

D=t 111 1]
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Table 5. Estimated parameters for the thirteen cases

Case

B

C

BM X

BMY

~n

No. O g
1 105.141+ 0.031 104.483+0.033 106.188+0.031 N/A N/A 0.0025
2 105.151+0.033 104.489+0.030 106.197 % 0.030 N/A N/A 0.0010
3 105.161+ .033 104.497+ .026 106.209+ 0.026 N/A N/A 146.3056
4 105.150+ .033 104.489+ .030 106.197 =% .030 N/A N/A 0.0019
5 105.092+ .019 104.421+ .021 106.138% .019 N/A 107.414+0.021 0.0005
6 105.178 = .017 104.508+=0.016 106.225%+ .016 100.086 £ .021 N/A 0.0005
7 105.180+0.018 104.509+0.015 106.227+0.016 100.090 + 0.024 N/A 0.0002
8 105.137+0.030 104.470+0.031 106.183+0.030 100.030+0.026 107.470=% .026 0.0010
9 105.137+0.039 104.467+ .038 106.184+0.038 100.039+0.036 107.461+ 0.036 0.0003
10 105.147+0.035 104.477%+0.032 106.193+0.032 100.029+0.029 107.471+ 0.029 75.3115
11 0.479+ 0.012 -0.192+ 0.012 1.525+ 0.012 -4.613+ 0.014 2.801% 0.012 0.0005
12 0.000+ 0.023 -0.670% 0.028 1.047+ 0.029 -5.092 = 0.029 2.322% 0.028 0.0005
13 0.479+ 0.012 -0.192+ 0.011 1.526 % 0.011 -4.611+ 0.017 2.799% 0.012 0.0002
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Fig. 3. The variance component for the thirteen cases.

On the other hand, case no 11 is un-weighted and case no. 13 is
weighted by distances. Case no. 12 uses a special generalized-
inverse, which is expressed by the D, matrix and it sets the
value of the first unknown to zero. D, is a minimum constraint
and not an inner's constraint. This matrix has the following
structure:

D,=L 0 0 0 0]

Although cases no. 11 and 12 use different generalized
inverses in terms of the D matrix, it is very interesting to
observe that the variance components in both cases are very
identical (0.0005), which is one of the theoretical results of
the generalized inverse. On the other hand, their standard
deviations of the estimated parameters are relatively large

when compared with the ones that were obtained from case
no. 13.

Case no. 13 has the smallest variance component and standard
deviations for the estimated parameters among all cases, which
is expected since it uses the minimum norm solution and the
distance-based weighting scheme. On the other hand, its
variance component is very identical to the one that was
obtained for case no. 7 in which the least squares solution is
constrained by BM Y as a fixed constraint.

It is very important to note that the solution vector for the
network parameters in cases no. 11 and 13 satisfy the constraint
shown in Equation 11, which can be interpreted as the
minimum-norm solution. In other words, the summation of the
estimated parameters is equal to zero.
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5. CONCLUSIONS

This paper argues that proper integration and evaluation of
existing control information with the adjustment of a new
leveling network require a step-wise approach that could reveal
the hidden aspects of their uncertainties or stochastic properties.
Experimental findings strongly support this argument. The free-
network solution delivers the best global accuracy in terms of
reference variance or variance component and the best or the
smallest standard deviations for the unknown parameters (see
case no. 13). This case can be used as a reference or a baseline
to compare other cases and results that were obtained during
the course of this study as well as practical uses. In particular,
the free network solution with minimum-norm could be viewed
as the first step in the workflow for the adjustment of the
leveling network since it gives a clear idea about the overall
accuracy of the new observations as well as the best accuracy
for the unknown parameters.

In general, the classical distance-based weighting gives the
best global accuracy in terms of the variance component in all
cases. Except for cases no. 3 and 10, the ordinarily least squares
solution that uses the two control points (BM X and BM Y)
does not give the best overall accuracy. The use of a one
control point brings a dramatic improve to the estimated
variance component (case no. 7), which is very identical to the
one that was obtained by the free-network solution (case no.
13). On the other hand, the internal accuracy in this case does
not predict its external accuracy. In other words, this modeling
does not fully account for the underlying sources of random
errors or it has a bias. The least squares solution with pseudo
observation reveals that this solution will deliver a very close
global accuracy to the free-network solution. Moreover, its
internal accuracy from the least squares solution could predict
its external accuracy, which was defined by the comparison
with the check points.

This work identifies a knowledge gap that could explain and
model the connection between Equation 12 and the variance-
covariance matrix. In general, this paper calls for more work
that could explain the conceptual and the implementation
aspects of adjustment computations in practical examples.
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