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Abstract: Proper integration and evaluation of an existing vertical control information with the adjustment of a new 

leveling network require a stepwise approach that could reveal the hidden aspects of their uncertainties or stochastic 

properties. The general use of the control information as fixed quantities in the adjustment of the leveling networks is 

a major flaw. To this end, the fundamental concepts of least squares solutions offer a flexible and a rich framework for 

proper integration and modeling of control information and their uncertainty for new leveling networks. This paper 

provides a comprehensive review and analysis of a workflow that can be used to integrate and evaluate the existing 

control information or benchmarks to a new leveling network. In particular, this paper exploits three different 

approaches of least squares solutions to integrate and evaluate the stochastic properties of the existing control 

information and observations that belong to a new network. First, ordinary least squares solution, which constrained 

by Gauss-Markov model, was exploited to depict the normal practice of leveling networks adjustment in which the 

control information will be introduced as constant or fixed values. Second, least squares solution with pseudo 

observations was exploited for proper integration of control information and their stochastic properties. Third, free-

network least squares solution was exploited as a mechanism to separate and quantify the stochastic properties of the 

observations from the ones that will be associated with the control information. Through the use of a numerical 

example, this paper offers some new perspectives and a detailed analysis that explains the interplay between the 

different aspects of least squares solutions for the integration and evaluation of vertical control information and their 

uncertainties with new leveling networks.  
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1. INTRODUCTION 

 

Although the adjustment of leveling networks is a classical 

topic and practice in the surveying works, proper integration 

and evaluation of an existing vertical control information or 

the values of benchmarks to a new network is not a trivial 

task and is not deeply understood. Surprisingly enough, this 

lack of understanding exists at the conceptual and the 

practical levels. In one hand, this lack of understanding may 

be explained by the way in which the subject of adjustment 

computations was taught. On the other hand, this lack of 

understanding may be explained by the weak relationship 

between the professional practice and the advanced concepts 

of modeling uncertainties in the general framework of least 

squares solutions. For example, handling or integrating the 

control information as fixed values to a new leveling network 

will ignore their uncertainties or stochastic properties. 

Specifically, it will ignore the stochastic interplay between 

the new observations and the existing control information in 

terms of exchanging the benefit of accuracy improvement 

among each other. As such, the new leveling network could 

be viewed as a local or isolated network since it does not 

acquire the stochastic properties of the existing benchmark/s. 

In other words, the new network will not be correctly tied or 

unified with the existing control information or network and 

it will miss the opportunity of proper information update and 

integration. This is equally true for adjustment by observation 

and condition equations. In fact, this is more true and obvious 

for the condition equations since their formulation are 

completely dependent on local constraints between the 

observations that do not include any knowledge about the 

existing control information. This is not the first paper to 

address this issue. For example, more than two decades ago 

Schwarz [1] addressed the same issue in the context of GPS 

network adjustment and update, which is very similar to the 

issue of the leveling network, which will be addressed in this 

paper. 

 

As is well known and from theoretical proofs, proper 

weighting of the least squares solution of a leveling network 

is inversely proportional to the distances between the leveling 

points or the height difference between pairs of points [2]. In 
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other words, the uncertainties or the relative contribution of 

different observations in the least squares solution of the 

leveling networks are expressed in terms of distances. 

Sometimes the uncertainties of the existing vertical control 

information are expressed in terms of their standard 

deviations or variances, which were estimated from their 

previous dispersion or variance-covariance matrices. 

Although this type of expression or representation of 

uncertainties is very common, it makes the integration of the 

uncertainties of the existing vertical control information to a 

new leveling network a non-trivial task and creates a 

numerical imbalance among the elements of the weight 

matrix that will be used to solve for the parameters of the 

new leveling network. In particular, this representation may 

generate a very large reference variance or variance 

component, which may give a wrong message or indication 

about the quality of the obtained solution from the least 

squares in terms of its global fit. Therefore, the standard 

deviations of the control information, which were obtained 

from a previous adjustment, should be transformed to their 

equivalent distances for proper inclusion or integration to the 

least squares solution of new leveling networks. In addition 

and as a recommendation, the representation of the 

uncertainties of the benchmark values should be extended to 

include the standard deviations as well as the distances that 

were used to build their previous weighting matrices.        

 

This paper argues that proper integration and evaluation of an 

existing vertical control information with the adjustment of a 

new leveling network require a stepwise approach that could 

reveal the hidden aspects of their uncertainties or stochastic 

properties. To this end, the fundamental concepts of least 

squares solutions offer a flexible and a rich framework for 

proper integration and modeling of control information and 

their uncertainty for new leveling networks. This paper 

provides a comprehensive review and analysis of a workflow 

that can be used to integrate and evaluate the control 

information or benchmarks values to new leveling networks. 

In particular, this paper exploits three different approaches of 

least squares solutions to integrate and evaluate the stochastic 

properties of the control information and observations of a 

new leveling network. First, ordinary least squares solution, 

which will be constrained by linear Gauss-Markov model, 

was exploited to depict the normal practice of leveling 

networks adjustment in which the control information will be 

introduced as constants or fixed values. In other words, the 

first approach ignores the stochastic properties of the control 

information and leaves the new leveling network defined in a 

local vertical datum or isolated from the existing network. 

More importantly, the first approach will serve as a baseline 

for comparison with the other two approaches. Second, least 

squares solution with pseudo observations was exploited for 

proper integration of control information and their stochastic 

properties to a new leveling network. The second approach 

offers a very elegant framework for the inclusion of the 

stochastic properties of the control information as well as the 

ones of new observations in one unified framework that 

mimic the original Gauss-Markov model. Moreover, it avoids 

the special handling of the stochastic properties of the control 

information (Benchmarks) if their uncertainties were 

modeled within the normal representation of ordinary least 

squares solution or a modified Gauss-Markov Model with 

error propagation in which the uncertainties of the control 

information will be part of a restricted weight matrix. This 

weight matrix will have the same size of the given weight 

matrix of the observations of the new leveling network. 

Although there is some reservation against the least squares 

with pseudo observations for large data sets [3], this 

reservation can be handled, for example, by sequential 

adjustment. Third, a free-network least squares solution was 

exploited as a mechanism to separate and quantify the 

stochastic properties of the observations from the ones that 

will be associated with the control information. In particular, 

the uniqueness of the reference variance or the variance 

component will be used as a measure for the global fit and 

quality control of the stochastic properties of the observations 

in a new leveling network. 

 

This paper is organized as follows. Section two provides a 

detailed review for the three approaches of least squares 

solution that will be used in the test example. Section three 

explains the research methodology of this work. Section four 

shows the test example and its relevant data that will be used 

to demonstrate the argument of this paper. Section five 

presents the results and analysis of the test example. Section 

six concludes the paper with some recommendations. 

 

2. LEAST SQUARES MODELING 

 
As stated, this paper exploits three different approaches of least 

squares solutions to integrate and evaluate the stochastic 

properties of the existing control information and new 

observations. Namely, it exploits ordinary least squares solution 

or linear Gauss-Markov model, least squares solution with 

pseudo observations, and Free-network least squares solution. 

 

During the discussion in this section, the simulated leveling 

network shown in Fig. 1 will be used to explain the different 

aspects of the three approaches of the least squares solutions. 

Table 1 shows the relevant data of the simulated leveling 

network in terms of the observed difference in heights (y1, ..., 

y2) between points (H1, H2, H3, H4), the distances (L1, ..., L5) 

between points, and the standard deviations of each observation 

(
1y , ..., 

5y ). 

 

 

Fig. 1. A simulated leveling network 

 

Table 1. Relevant data for the simulated example 
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Observation Distance Between 

Point (km) 

Standard 

Deviation 

y1 L1 
1y  

y2 L2 
2y  

y3 L3 
3y  

y4 L4 
4y  

y5 L5 
5y  

 

The general formulation of Gauss-Markov model that 

constrains the ordinary least squares solution is typically 

depicted by the following equation: 

 

   111 nxmxnxmnx eAY   ,     ),0(~ 12
0

Pe                          (1) 

 

where: Y: Observations vector (here: differences in        

elevations between points pairs). 

             n  : Number of observations. 

            m : Number of unknowns or parameters (here: heights 

of points). 

             A : Design matrix. 

   : Unknown parameters. 

  e   : True error vector. 
2

0 : Unit reference variance. 

Pn x n : A diagonal weight matrix for the observations 

vector (Y). 

 

The target function for the least squares solution, which is 

constrained by Gauss-Markov model shown in Equation 1 is: 

                                                 

)(2),,( eAYPeee TT                            (2.a) 

 

It should be noted that the target function in equation (2.a) is 

expressed in terms of Lagrange multiplier vector (  ). 

Practically, Lagrange multipliers offer an automatic mechanism 

for direct accommodation or inclusion of the constraint/s with a 

given function [4]. Equation (2.b) offers another representation 

for the target function that does not include the Lagrange 

multiplier vector and the error vector (e). In other words, it 

gives a direct minimization of the squared weighted error in 

terms of the observation vector (Y), the design matrix (A), the 

weight matrix (P) and the unknown parameters vector )(  

and it restricts the minimization process to the parameters 

vector. 

 

     )()()(  AYPAY T                                          (2.b) 

 

where:   : Target function to be minimized with respect to  

),,( e in 2.a or )(  in 2.b. 

                  :    Lagrange multiplier. 

 

The manipulation of the target function shown in (2.a or 2.b) 

by the minimization process will lead to the following set of 

equations: 

    
C

T

N

T PYAPAA

1

1
^

)(



                                                         (3)                

^~

AYe                                                                        

(4) 
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          12
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^

}{  ND                                                             (6.a)          

1
2

0

^
^

^

}{  ND                                                           (6.b)           

where: 
^

 : Estimated parameters vector. 

            }{
^

D : Dispersion or variance co-variance matrix of   

the unknown parameters. 
~

e : Predicted residuals vector. 
2

0

^

 : Estimated reference variance or variance 

component. 

n    : Number of observations or equations. 

m   : Number of unknown parameters or observation's 

equations. 

r    : redundancy number. 

N   : Normal matrix. 

 

Equation 6.a captures the geometry in terms of the connectivity 

and directions of the nodes in the leveling network before 

applying the scaling by the estimated variance component 

shown in Equation 5. Therefore, it is called the a priori 

dispersion or variance-covariance matrix. This matrix can be 

computed before the commencement of the field work since its 

elements consists of constant values (-1, 0, 1) and an assumed 

variance of the observations, which can be specified with high 

confidence in advance. Equation (6.b) captures the geometry of 

the leveling network after the field work since its definition 

depends on the estimated reference variance or variance 

component from the adjustment process. 
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             (7) 

 

It is very simple to observe that the design matrix A has a 

rank deficiency or dependency of one, which can be checked 

by adding the third and the fifth row to generate the fourth 

row. Let us fix the height of the fourth point (H4) to remove 

the rank deficiency in the design matrix A. By doing this, the 

fourth column in the design matrix will be removed and 
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added to the vector of observations Y. Therefore, Equation 7 

can be rewritten as follows: 
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                      (8) 

 

By moving H4 to the left hand side of Equation 8, a big 

assumption was made. H4 is treated as a fixed quantity or 

constant value, which is a safe assumption for a local leveling 

network. Local networks are used for measurement in 

confined engineering projects such as stakeout of buildings or 

earthwork computations. On the other hand, this is not a 

correct assumption when the new network is to be tied to an 

existing or national leveling network. In fact, even in 

engineering projects that require absolute measurement for 

deformation, for example, in dams and bridges, the concept of 

local network is not an adequate one since it will not account 

for the stochastic properties of the previous measurements. In 

general, H4 or any other point in the network could belong to 

an existing leveling network and their values will be 

associated with some figures of accuracy or standard 

deviations. Therefore, ignoring the stochastic properties of H4 

or any other point will render the network work shown in 

Figure 1 as a local network and will it not be correctly tied to 

the existing leveling network. 

 

Gauss-Markov model with pseudo-observations can be used 

for proper integration of the stochastic properties of the 

existing control information. The model shown in (7) will be 

modified and extended to realize the given control 

information as a pseudo-observation in which H4 will be 

treated as an unknown parameter as well as an observation. 

As shown in equation (9), the given value of H4 will be an 

element of the observation vector Y. The rank deficiency in 

design matrix (A) will be removed by adding a pseudo 

observation for H4
 
as a new row in the design matrix (A) as 

shown in equation (9) and H4 appears as an element in the 

unknown parameters vector ( ). In general, the least squares 

solution with pseudo observations transforms the control 

information into unknown parameter/s and uses their prior 

knowledge or values to construct a stochastic constraint to 

overcome the rank deficiency of the design matrix (A). As 

such, the least squares solution with pseudo observations can 

be seen as a special case of the generalized inverse solution. 
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              (9) 

 

The free network solution of the least squares deals with the 

problem of the generalized inverse of a rank deficient matrix 

(A) [5]. Although the generalized inverse does not give a 

unique solution for the unknown parameters [6], the reference 

variance or the variance component shown in equation (6) is 

unique. In other words, the estimated value of the variance 

component does not depend on which generalized inverse that 

was used to estimate the unknown parameters. The 

uniqueness of the variance component will be exploited in 

this paper to separate the stochastic properties of the new 

observations from the ones that will be associated with the 

existing control information. Although the same process of 

errors separation can be obtained by the use of condition 

equations, it is beyond the scope of this paper. 

 

The unique minimum-norm condition or inner constraints [7] 

can be used to get an optimal or unique least square solution. 

In other words, the minimum-norm solution will give the 

smallest standard deviations for the unknown parameters of 

the leveling network.  The estimated parameters in the free 

network solution can be obtained by: 

                                                      

PYADDPAA TTT 1
^

)(                                  (10) 

 

The matrix D should satisfy:  

  

                 0
^

D                                                              (11) 

 

The structure of the matrix D, which contains the elements of 

the inner constraints, depends on the structure of the design 

matrix A or the geometric configuration of the leveling 

network. For a leveling network and as shown in Equation 11, 

an inner constraint forces the average heights of all unknown 

parameters in the network to remain unchanged or their sum 

is equal to zero. Mathematically, the inner constraint/s in the 

form of the D matrix can be derived by the use of the 

similarity transformation or S-transformation for short [7]. As 

such, it should be noted that the inner constraint/s will derived 

by a functional relationship that is not part of the target 

function of the least squares minimization process. The least 

squares solution only enforces the constraints shown in 

Equations 1 and 11. Therefore, the free network solution in 

the context of the minimum-norm is a two steps process. 

First, is to identify the structure of the minimum constraint/s. 

Second, is to apply the least squares minimization process. 

This type of clarification is very critical for proper 

understanding and implementation of the least squares 

solutions. In fact, this clarification will lead us to the 

differentiation between minimum constraint/s and inner 

constraint/s. Inner constraint/s have to do with the minimum-

norm solution and this is not the case for general definition of 

the minimum constraint/s. 

 

Now we turn our attention on how to convert the standard 

deviations of existing control points into distances. In general, 

the uncertainties or the relative contribution of different 

observations in the least squares solution of the leveling 

networks are expressed in terms of distances [2]. Sometimes 

the uncertainties of the existing control information are 
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expressed in terms of their standard deviations, which were 

estimated from their previous dispersion or variance-

covariance matrices. Although this type of expression or 

representation of uncertainties is very common, it makes the 

integration of the uncertainties of the control information to a 

new network a non-trivial task. To this end, the standard 

deviation of each observation in a new leveling network can 

be converted to its equivalent distance by the following 

relationship: 

         

2











m
K


                                                            (12) 

where:  K  : Distance in km. 

m : A constant that is directly related to the order of    

the survey. 

 : The given standard deviation of an existing 

control point in mm. 

 

Table 2 shows the US Federal Geodetic Control 

Subcommittee (FGCS) vertical control survey accuracy 

standards by which we can convert the standard deviation of 

existing control points into distances and introduce them in 

the weight matrix of the least squares solution [8]. Yes 

indeed, this conversion will come at the cost of knowing the 

order and the class of the survey. 

 

Equation 12 should be used with a very special care since its 

conception is based on empirical findings and it is not directly 

connected to the variance-covariance matrices shown in (6.a 

or 6.b). In other words, Equation 12 expresses the misclosure 

between two leveling points as a function of a distance and 

some constant factor (m) that encapsulates the overall 

ecosystem of the measurement process. In particular, 

Equation 12 does not capture the geometry of the leveling 

network, which will be expressed by the normal matrix (N) 

that was shown in Equations 6.a and 6.b. In bold terms, it has 

nothing to do with the geometry of the leveling network. In 

fact, it can be said that there is a knowledge gap that could 

explain the connection or the link between the empirical 

formula shown in Equation 12 and the theoretical accuracy 

shown in Equations 6.a and 6.b. This gap warrants a future 

investigation to generalize and validate the equivalency 

between the accuracy figures of points pairs that can be 

obtained by Equation 12 and the ones that will be encountered 

in the leveling network as a function of the variance-

covariance matrix. 

 

 

Table 2.  1984 FGCS Vertical Control Survey Accuracy 

Standards 

Order and Class  (mm) 

First Order: Precise Leveling 

Class I K5.0  

Class II K7.0  

Second Order: For Engineering Works 

Class I K0.1  

Class II K3.1  

Third Order K0.2  

 

 

3. MATERIALS AND METHODS 

 

The research methodology is based on a gradual testing of 

different scenarios on a simple example to clarify the 

conceptual and the practical aspects of the adjustment of 

leveling networks. These scenarios will be given in section 

five. The overall objective of these scenarios is to 

demonstrate the main argument of this paper, which states 

that: 

 

"Proper integration and evaluation of vertical control 

information with the adjustment of a new leveling network 

require a stepwise approach that could reveal the hidden 

aspects of their uncertainties or stochastic properties" 

 

The principles of least squares solutions that were shown in 

the previous section will be used in this testing. In particular, 

the research methodology will investigate the following 

issues: 

 Different weighting schemes. Four different types of 

weighting will be tested. 

 Different scenarios for the use of the control 

information. 

 The three approaches of least squares solutions. 

  

3.1 Test Example 

 

Fig. 2 shows the layout of the topology of the test example 

for a leveling network, which consists of two known control 

points (BM X=100.00 m and BM Y=107.50 m), three 

unknown points (A, B, and C) and seven observations. This 

example was presented in [2] and it was chosen in this 

research to share a common test bed for the ideas presented in 

this paper. All units of this example were set on the metric 

system since the overall comparisons in the carried tests will 

be based on their relative values. Table 3 shows the relevant 

data for the example shown in Figure 2. It is important to note 

that this is an over constrained network since it uses two 

control points (BM X and BM Y). BM X and BM Y were 

assigned an identical standard deviation (   0.004 m) and 

distance (8.5 km) for the use in the weight matrix during the 

parameters estimation process by least squares. 

 

In general, only one control point is needed to constrain or to 

remove the rank deficiency or to fix the datum problem of 

leveling network. The provision of one control point can be 

seen as a minimum external constraint in light of the free 

network solution. The availability of two control points will 

give us the opportunity to use each one of them can serve the 

dual role of a control point as well as a check point. This type 

of use will be utilized to compare internal accuracy of the 

least squares solution, which will be computed from variance-

covariance matrix shown in Equation 6.b, with the external 

accuracy in terms of root-mean-square-error (RMSE). The 

RMSE will be obtained from the comparison between the 

given value of the control information (here: BM X and BM 

Y) and their estimated values from the least squares solution. 
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Fig.  2. Layout for the test example 

 

Table 3.  Data for the test example 

 

Line Observed 

Elevation 

Differences 

Length 

(km) 

Standard 

Deviation 

(m) 

1 5.1000 4  0.006 

2 2.3400 3  0.005 

3 -1.2500 2  0.003 

4 -6.1300 3  0.005 

5 -0.6800 2  0.003 

6 -3.0000 2  0.003 

7 1.7000 2  0.003 

 

4. RESULTS AND DISSCUSSION  

In this work, thirteen cases were tested and analyzed. These 

cases were designed to cover the three approaches of the least 

squares solutions that were proposed in this paper. Table 4 

shows the explanation of each case. Table 5 lists the 

numerical results for each case shown in Table 4. A 

MATLAB prototype software was developed to carry out the 

proposed tests that were outlined in Table 4. 

 

Fig. 3 shows a plot of the variance components for the 

thirteen cases in which there are two anomalies (cases no. 3 

and 10). The highest values were obtained by the use of the 

standard deviations in the weight matrix for cases no. 3 and 

10. For more information please check Tables 4 and 5. 

Clearly, these high values suggest that the use of the standard 

deviations in the weight matrix is not an optimal strategy to 

reflect the contributions of different observations in a global 

model fitting in terms of the variance component. 

 

In the first case, an un-weighted or equal weighted linear 

Gauss-Markov Model by an identity weight matrix was used. 

Except for cases no. 3 and 10, case no. 1 has the highest 

variance component value (0.0025), which suggests that an un-

weighted or weighting by an identity matrix is a sub-optimal 

strategy for weighting but is not a bad choice and this is even 

with the availability of the uncertainties in terms of standard 

deviation as suggested by the discussion in cases no. 3 and 10. 

In case no. 2, the variance component was improved by a factor 

of 2.5 (0.001) since the given distances shown in Table 3 were 

used to construct the weight matrix. This finding complies with 

theoretical proofs of weighting by distances [2] between 

leveling points. In addition, there are no major differences 

between the accuracy of the estimated parameters (A, B, C) in 

cases no. 1 and 2, which suggests that the variance component 

has a very minor influence on the dispersion or the variance-

covariance matrix. In fact this issue requires a deeper 

investigation in a separate paper to understand and analyze the 

impact of the weight matrix on the derived parameters and 

information from least squares solutions. 

 

Although case no. 3 has the highest value of the variance 

component, surprisingly enough it induced an improvement in 

the estimated accuracy of B and C and this is in comparison 

with the ones that were obtained from case no. 2, which uses 

the optimal weighting by distances. Therefore, the notion of 

optimal weighting by distances is not a global one. Yes, the 

values of the estimated parameters were changed between cases 

no. 2 and 3. Ones again, this finding supports the requirement 

for a further investigation to understand the impact of different 

weighting schemes on the derived information and parameters 

from least squares solutions. 

 

In case no. 4, normalized distances were used to construct the 

weight matrix. In particular, all distances shown in Table 3 

were divided by their minimum value (2). Division by the 

minimum distance was used to comply with the notion of 

giving more weight to the smallest distance since it should 

contribute by a higher value in the weight matrix. The only 

difference between cases no. 2 and 4 is the doubling of the 

variance component since it went from 0.001 in case no. 2 to 

0.0019 in case no. 4. On the other hand, the values of the 

 

                Table 4.  Test cases 

Case 

No. 

Explanation 

1 Un-weighted: linear Gauss-Markov Model 

2 Weighted by distances: linear Gauss-Markov 

Model 

3 Weighted by variance: linear Gauss-Markov Model 

4 Weighted by normalized distance: linear Gauss-

Markov Model 

5 Un-weighted: linear Gauss-Markov Model in 

which BM Y is unknown 

6 Un-weighted linear Gauss-Markov Model in which 

BM X is unknown 

7 Weighted by distance: linear Gauss-Markov Model 

in which BM X is unknown 

8 Un-weighted: linear Gauss-Markov Model with 

Pseudo Observations  

9 Weighted by distance: linear Gauss-Markov Model 

with Pseudo Observations 

10 Weighted by variance: linear Gauss-Markov Model 

with Pseudo Observations 

11 Un-weighted: Free-Network Solution Using D1 

matrix 

12 Un-weighted: Free-Network Solution Using D2 

matrix 

13 Weighted by distances: Free-Network Solution 

Using D1 matrix 
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estimated parameters (A, B, C) and their accuracies remain 

the same. This suggests that the normalization does not 

impact the estimated parameters and its impact was cancelled 

from the variance-covariance matrix. Therefore, 

normalization as shown in this case does not provide an 

advantage over the classical or the regular weighting by the 

pure inverse of the distances. On the contrary, it may harm 

the solution in terms of giving a higher value for the variance 

component or the reference variance. 

 

In cases no. 5, 6, and 7 only one benchmark value or control 

point was used to constrain the least squares solution and the 

other one was estimated as an unknown parameter. The main 

purpose of these three tests is to understand the impact of 

each control point on the global accuracy in terms of the 

variance component and the parameters accuracy in terms of 

their standard deviations. In general, these three cases exploit 

the idea of check points or the general notion of cross-

validation. It should be noted that cases no. 5 and 6 use un-

weighted or identity weight matrix for the least squares 

solution.  

 

In case no. 5 BM X (100) was used as a fixed or constant 

control point without using its stochastic properties and BM 

Y (107.5) was introduced as an unknown parameter in the 

least squares solution. In this case the variance component 

was improved by an order of magnitude (0.0005) in light of 

the previous cases (1, 2, and 4). Also the standard deviations 

of the three parameters (A, B, C) were improved. More 

importantly, BM Y has an accuracy figure of (   0.021) and 

an estimated value of (107.414), which is different from its 

given value (107.5) by 0.086. This difference can be viewed 

as an external accuracy for this particular point (BM Y). It 

should be noted that the internal accuracy of BM Y (   

0.021) does not predict its external accuracy (0.086). In 

general, this case reveals that the use of one control point 

(BM X) improve the global fit in terms of the variance 

component as well as the accuracy of A, B, and C. 

 

In case no. 6, BM Y (107.5) was used as a fixed or constant 

control point in a similar way as we did for BM X in case no. 

5. Similar variance component and standard deviations for the 

parameters were obtained for this case as the ones that were 

obtained for case no. 5. Moreover, it is very interesting to 

note that similar external (0.086) and internal (   0.021)  

accuracies were obtained for BM X as the ones that were 

obtained for BM Y in case no. 5. This suggests that there is 

no reason to prefer one point over the other to serve as a fixed 

control information to constrain the least squares solution. 

Either one of them could equally play the role of acceptable 

control information to constrain the least squares solution. 

 

In case no. 7, the least squares solution was weighted by the 

distances shown in Table 3. This weighting scheme generates 

a smaller variance component (0.0002) when compared with 

the ones that were obtained for cases no. 5 and 6 (0.0005). 

This decreased in the variance component can be viewed as a 

positive sign for the use of the distance for least squares 

weighting. On the other hand, comparable accuracy figures 

were obtained as the ones that were derived for cases no. 5 

and 6.   

Cases no. 8, 9, and 10 demonstrate the use of the Gauss-

Markov with pseudo observations, which provides a proper 

handling for the stochastic properties of the new observations 

and the given ones for control information. The control 

information (here BM X and BM Y) will be introduced as 

unknowns in the design matrix (A) and this matrix will 

become a rank deficient. This rank deficiency was removed 

by adding two rows or constraints to the design matrix (A). In 

the least squares solutions these constraints will be integrated 

with their associated weights. The addition of the pseudo 

observations can be viewed as prior knowledge with 

uncertainties or stochastic constraints. In these three cases (8, 

9, and 10), three different weighting approaches were tested, 

namely, un-weighted, weighting by distance, and weighting 

by variances. 

 

In case no. 8, which is un-weighted solution or equally 

weighted by an identity matrix, the variance component 

(0.001) is a little bit higher by an order of a magnitude  than 

the one that was obtained for case no. 7 (0.0002). In light of 

the previous cases, this is an expected result for the variance 

component since the un-weighted solutions gave higher 

variance components when compared with the ones that were 

weighted by distances.  Similar to cases no. 5 and 6, BM X 

and BM Y have equal standard deviations (0.024) but a little 

bit larger than the ones in the stated cases (0.021). It is very 

interesting to observe that the internal accuracy in terms of 

the standard deviations for BM X and BM Y are very close to 

their external accuracy since their estimated values (100.030 

and 107.470) are differing from their given values (100.00 

and 107.50) by very close amounts from the ones that were 

obtained from the lease squares solution. In other words and 

with proper modeling of the control information, the least 

squares internal accuracy can predict its external accuracy.  

 

Case no. 9, which is weighted by distances, shows a dramatic 

improvement in the variance component by an order of 

magnitude. It went from (0.001) in case no. 8 to (0.0003) in 

case no. 9. On the other hand, there is an increase in the 

standard deviations of the estimated parameters (A, B, C, BM 

X, and BM Y). 

 

In case no. 10, which is weighted by the variances of the 

observations and the control information, a very large 

variance component was obtained. On the other hand, very 

reasonable results were obtained for the standard deviations 

of the estimated parameters. Surprisingly enough, in this case 

the internal accuracy or the standard deviations (   0.029) 

from the least squares solution for the two control points (BM 

X and BM Y) gives a perfect prediction for their external 

accuracy since they differ by the same amount from their 

given values.  

 

Cases no. 11, 12, and 13 demonstrate the use of free-network 

solution for the leveling network. Cases no. 11 and 13 use the 

minimum-norm or the inner's constraint solution, which is 

expressed by the D1 matrix. This matrix has the following 

structure: 

 

 111111 D  
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Table 5.  Estimated parameters for the thirteen cases 

Case 

No. 

A B C BM X BM Y ^
2

0  

1 

 

105.141  0.031 

 

104.483 0.033 

 

106.188 0.031 

 

N/A 

 

N/A 

 

0.0025 

2 105.151 0.033 104.489 0.030 106.197 0.030 N/A N/A 0.0010 

3 105.161  .033 104.497  .026 106.209 0.026 N/A N/A 146.3056 

4 105.150  .033 104.489  .030 106.197  .030 N/A N/A 0.0019 

5 105.092  .019 104.421  .021 106.138  .019 N/A 107.414 0.021 0.0005 

6 105.178  .017 104.508 0.016 106.225  .016 100.086 .021 N/A 0.0005 

7 105.180 0.018 104.509 0.015 106.227 0.016 100.090 0.024 N/A 0.0002 

8 105.137 0.030 104.470 0.031 106.183 0.030 100.030 0.026 107.470  .026 0.0010 

9 105.137 0.039 104.467  .038 106.184 0.038 100.039 0.036 107.461 0.036 0.0003 

10 105.147 0.035 104.477 0.032 106.193 0.032 100.029 0.029 107.471 0.029 75.3115 

11 0.479  0.012 -0.192  0.012 1.525  0.012 -4.613  0.014 2.801  0.012 0.0005 

12 0.000  0.023 -0.670  0.028 1.047  0.029 -5.092  0.029 2.322  0.028 0.0005 

13 0.479  0.012 -0.192  0.011 1.526  0.011 -4.611  0.017 2.799  0.012 0.0002 

 

 

 

 

Fig. 3.  The variance component for the thirteen cases. 

 
 

On the other hand, case no 11 is un-weighted and case no. 13 is 

weighted by distances. Case no. 12 uses a special generalized-

inverse, which is expressed by the D2 matrix and it sets the 

value of the first unknown to zero. D2 is a minimum constraint 

and not an inner's constraint. This matrix has the following 

structure: 

 000012 D
 

 

Although cases no. 11 and 12 use different generalized 

inverses in terms of the D matrix, it is very interesting to 

observe that the variance components in both cases are very 

identical (0.0005), which is one of the theoretical results of 

the generalized inverse. On the other hand, their standard 

deviations of the estimated parameters are relatively large 

when compared with the ones that were obtained from case 

no. 13.  

Case no. 13 has the smallest variance component and standard 

deviations for the estimated parameters among all cases, which 

is expected since it uses the minimum norm solution and the 

distance-based weighting scheme. On the other hand, its 

variance component is very identical to the one that was 

obtained for case no. 7 in which the least squares solution is 

constrained by BM Y as a fixed constraint. 

 

It is very important to note that the solution vector for the 

network parameters in cases no. 11 and 13 satisfy the constraint 

shown in Equation 11, which can be interpreted as the 

minimum-norm solution. In other words, the summation of the 

estimated parameters is equal to zero.  



Gamal H. Seedahmed / UofKEJ Vol. 7 Issue 2 pp. 25-33 (August -2017)  
 

33 
 

5. CONCLUSIONS  

 

This paper argues that proper integration and evaluation of 

existing control information with the adjustment of a new 

leveling network require a step-wise approach that could reveal 

the hidden aspects of their uncertainties or stochastic properties. 

Experimental findings strongly support this argument. The free-

network solution delivers the best global accuracy in terms of 

reference variance or variance component and the best or the 

smallest standard deviations for the unknown parameters (see 

case no. 13). This case can be used as a reference or a baseline 

to compare other cases and results that were obtained during 

the course of this study as well as practical uses. In particular, 

the free network solution with minimum-norm could be viewed 

as the first step in the workflow for the adjustment of the 

leveling network since it gives a clear idea about the overall 

accuracy of the new observations as well as the best accuracy 

for the unknown parameters. 

 

 In general, the classical distance-based weighting gives the 

best global accuracy in terms of the variance component in all 

cases. Except for cases no. 3 and 10, the ordinarily least squares 

solution that uses the two control points (BM X and BM Y) 

does not give the best overall accuracy. The use of a one 

control point brings a dramatic improve to the estimated 

variance component (case no. 7), which is very identical to the 

one that was obtained by the free-network solution (case no. 

13). On the other hand, the internal accuracy in this case does 

not predict its external accuracy. In other words, this modeling 

does not fully account for the underlying sources of random 

errors or it has a bias. The least squares solution with pseudo 

observation reveals that this solution will deliver a very close 

global accuracy to the free-network solution. Moreover, its 

internal accuracy from the least squares solution could predict 

its external accuracy, which was defined by the comparison 

with the check points.    

 

This work identifies a knowledge gap that could explain and 

model the connection between Equation 12 and the variance-

covariance matrix. In general, this paper calls for more work 

that could explain the conceptual and the implementation 

aspects of adjustment computations in practical examples.  
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