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Abstract: In this paper, the full AC incremental linear programming optimal power flow using POWERWORLD® 

Simulator and Microsoft® Excel is presented. A proposed formulation of including the VAR cost function to the 

objective function and an implementation of the proposed formulation in a 6-bus test system and the IEEE 30 bus 

system was made in order to decide whether this formulation favorably or unfavorably affects the optimization 

process. Research proved that this formulation can improve the total optimization process but not for all system 
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1. INTRODUCTION 

The Optimal Power Flow (OPF) problem is large and 

complicated non-linear optimization problem. It’s a 

combination between Economic Dispatch (ED) and Power 

Flow (PF) calculation in which by calculating the dependent 

and control variables of the objective function through the 

power flow calculation and solve the optimization problem as 

same as solved through ED. The objective of the OPF is to 

find an optimum secured system, optimum for minimizing 

total generation cost and total losses, secured for all operating 

parts that must run at their limits such as generators, bus-bars, 

transformers and transmission lines. 

Several methods are used to solve this problem such as non-

linear methods, linear methods…etc., as stated in [1] and [2]. 

The non-linear methods are suffering from some difficulties.  

Lambda iteration and Newton based methods have been found 

to converge very fast but have difficulties in handling the 

inequality constraints, the gradient method is suffering from 

both convergence speed and inequality constraints, but these 

drawbacks did not exist in Linear Programming (LP) methods 

such as the Incremental LP method [2], [3]. 

 

The full AC Optimal Power Flow iterative LP method or the 

incremental LP method as in [2] is formulated by “linearizing 

the nonlinear objective function and constraints of the OPF 

AC power flow formulation around the current operating 

point using a first order Taylor series expansion in order to 

create a convex LP problem”, which is formulated in terms of 

the increments of the control variables. Paper [2] proved that 

this method possesses speed and flexibility during calculation 

and produces reliable results for all system types and sizes.  

 

As observed, reactive power pricing is not included in the 

formulation of paper [2] and reference [3]. Reactive power 

plays an important role in real power transfer and effects 

power system operation in numerous ways [4,5]. Pricing of 

reactive power is very important for the deregulated electric 

industry both financially and operationally. Financially 

through improving the economic efficiency of the system, 

operationally, the system efficiency and reliability will be 

improved by the reduction of the total transmission losses and 

the improvement of the voltage profile of the network [6]. 

 

In this paper, the inclusion of reactive power cost function to 

the objective function formulated in [2] and [3] is introduced. 

In incremental LP method, reactive power is already 

optimized therefore the inclusion of reactive power to the 

objective function is for improving the optimization process. 

If the influence of this inclusion is favorable i.e. improving 

the optimization process for the real power, then it can be 

included. If the influence is unfavorable then the VAR cost 

function must not be included. Note that in [2] the trust region 

method was used, which is not included in this paper. 

2.  PROBLEM FORMULATION 

A. The Optimal Power Flow Formulation combining the 

Economic dispatch and the Power Flow: 
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 The objective function: 

 

min 𝐹𝑖  𝑃gen𝑖
 𝑛

𝑖=1 , Same as ED  (1) 

 

 Subjected to the equality constraint: 

 

 𝑃gen𝑖

𝑁
𝑖=1 = 𝑃Totalload + 𝑃Totallosses, Same as ED (2) 

 
 Subjected to the inequality constraints: 

 

𝑃gen𝑖

min ≤ 𝑃gen𝑖
≤ 𝑃gen𝑖

max 

𝑄gen𝑖

min ≤ 𝑄gen𝑖
≤ 𝑄gen𝑖

max  

𝑃𝑖𝑗
min ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗

max 

Or, 𝑆𝑖𝑗
min ≤ 𝑆𝑖𝑗 ≤  𝑆𝑖𝑗

max 

𝑉𝑖
min ≤ 𝑉𝑖 ≤ 𝑉𝑖

max, for 𝑖 = 1,2,3, … , 𝑛 

 
Where 𝑃gen𝑖

, 𝑄gen𝑖
, 𝑉𝑖 , 𝑃𝑖𝑗  and 𝑆𝑖𝑗  are the real generated power 

at generator 𝑖, the reactive generated power at generator 𝑖, the 

voltage of bus 𝑖, the real power flow at line𝑖𝑗 and the complex 

or the apparent power flow at line 𝑖𝑗  respectively. These 

variables are calculated through the power flow solution [3]. 

 

B. The Power Flow Equation: 

 
𝑃gen𝑖

−𝑗𝑄gen𝑖

𝑉𝑖
∗ = 𝑉𝑖  𝑦𝑖𝑗

𝑛
𝑗=0
𝑖≠𝑗

− 𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

  (3) 

∴ 𝑃gen𝑖
− 𝑗𝑄gen𝑖

= 𝑉𝑖
∗  𝑉𝑖  𝑦𝑖𝑗

𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

  (4) 

∴ 𝑃gen𝑖
= ℜ 𝑉𝑖

∗  𝑉𝑖  𝑦𝑖𝑗
𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗 𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

    (5) 

And𝑄gen𝑖
= −ℑ 𝑉𝑖

∗  𝑉𝑖  𝑦𝑖𝑗
𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

   (6) 

𝑃𝑖𝑗 = ℜ 𝑉𝑖   𝑉𝑖 − 𝑉𝑗  𝑦𝑖𝑗 + 𝑉𝑖
2𝑦shunt𝑖𝑗

 
∗

   (7) 

𝑆𝑖𝑗 = abs  𝑉𝑖   𝑉𝑖 − 𝑉𝑗  𝑦𝑖𝑗 + 𝑉𝑖
2𝑦shunt𝑖𝑗

 
∗

   (8) 

 
Where: 

 

𝑦𝑖𝑗 ≡ the 𝑖𝑗 termof the admittance matrix 
𝑉𝑖
∗ ≡ the conjugate value of the complex voltage at bus 𝑖 

𝑦shunt𝑖𝑗

≡ the shunt charging admittance to ground of line𝑖𝑗 
 
Therefore, the OPF equality constraint is written as: 

 

 The equality constraint: 

 

 𝑃gen𝑖
− 𝑃load𝑖

 -𝑗  𝑄gen𝑖
− 𝑄𝑙𝑜𝑎𝑑 𝑖

 = 𝑉𝑖
∗  𝑉𝑖  𝑦𝑖𝑗

𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

  (9) 

 

𝑃gen𝑖
− 𝑃load𝑖

= ℜ 𝑉𝑖
∗  𝑉𝑖  𝑦𝑖𝑗

𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

   (10) 

 

𝑄gen𝑖
− 𝑄load𝑖

= −ℑ 𝑉𝑖
∗  𝑉𝑖  𝑦𝑖𝑗

𝑛
𝑗=0
𝑖≠𝑗

−  𝑦𝑖𝑗𝑉𝑗
𝑛
𝑗=0
𝑖≠𝑗

   (11) 

C. Incremental LP Method: 

 

In the full AC power flow using Newton-Raphson method [7], 

the following problem is solved: 

 

 𝓙  
∆𝛿
∆𝑉

 =  
∆𝑃gen

∆𝑄gen
    (12) 

 

Where: 

𝒥 ≡The Jacobean matrix.  
∆P&∆Q ≡ are the change in power due to the change 

of voltage magnitudes ∆V and their phase angles ∆δ. 
 

In the Incremental LP method and since using first order 

Taylor series expansion, the optimization process will be 

written in terms of ∆𝑃gen, ∆𝑄gen, ∆𝑉 and ∆𝛿 where: 

 

𝐹𝑖  𝑃gen𝑖
 = 𝐹𝑖  𝑃gen𝑖

 + 𝐹𝑖  𝑃gen𝑖
 
′

 𝑃scheduled𝑖
− 𝑃gen𝑖

 𝑉, 𝛿   (13) 

 
The LP OPF should be started by a base power flow solution; 

here the power flow solution is designated as power flow zero 

(PF0) and the values of the base power flow solution are 

designated as: 

 

𝑃gen
0 , 𝑄gen

0 , 𝑉0 and 𝛿0 

 
The linearized objective function of the incremental LPOPF 

is: 

 

min  𝐹𝑖  𝑃gen𝑖

0  +
d𝐹𝑖 𝑃gen𝑖

0 

d𝑃gen𝑖
0 ∆𝑃gen𝑖

 𝑛
𝑖=1   (14) 

 

Where: 

 

𝐹𝑖 𝑃gen𝑖
0  ≡The objective function in terms of the base 

PF solution values. 
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ≡The incremental cost function in terms of 

the base PF solution.  
 

∵  𝐹𝑖  𝑃gen𝑖

0   is considered to be as constant, it can be 

eliminated from the objective function, therefore the 

linearized objective function becomes: 

 

min  
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖

 𝑛
𝑖=1   (15) 

 

In order to linearize the real and reactive power equality 

constraints, the constraints of the power flow solution are 

formulated similar to the expression of the N-R method except 

that all the variables are included even the slack bus variables, 

and there is no need for the inversion of the Jacobean matrix 

to calculate ∆𝛿𝑖  and ∆𝑉𝑖  since the LP optimization is 

responsible of calculating these values [3]. The linearized real 

and reactive power equality constraints are: 
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𝜕𝑃1

𝜕𝛿1
⋯

𝜕𝑃𝑛

𝜕𝛿1

⋮ ⋱ ⋮
𝜕𝑃1

𝜕𝛿𝑛
⋯

𝜕𝑃𝑛

𝜕𝛿𝑛 
 
 
 

 
 
 
 
𝜕𝑃1

𝜕𝑉1
⋯

𝜕𝑃𝑛

𝜕𝑉1

⋮ ⋱ ⋮
𝜕𝑃1

𝜕𝑉𝑛
⋯

𝜕𝑃𝑛

𝜕𝑉𝑛  
 
 
 

 
 
 
 
𝜕𝑄1

𝜕𝛿1
⋯

𝜕𝑄𝑛

𝜕𝛿1

⋮ ⋱ ⋮
𝜕𝑄1

𝜕𝛿𝑛
⋯

𝜕𝑄𝑛

𝜕𝛿𝑛  
 
 
 

 
 
 
 
𝜕𝑄1

𝜕𝑉1
⋯

𝜕𝑄𝑛

𝜕𝑉1

⋮ ⋱ ⋮
𝜕𝑄1

𝜕𝑉𝑛
⋯

𝜕𝑄𝑛

𝜕𝑉𝑛  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
∆𝛿1

⋮
∆𝛿𝑛
∆𝑉1

⋮
∆𝑉𝑛  

 
 
 
 
 

=

                           

 
 
 
 
 
 
 
𝑃scheduled1

− 𝑃1 𝑉, 𝛿 

⋮
𝑃scheduled𝑛

− 𝑃𝑛 𝑉, 𝛿 

𝑄scheduled1
− 𝑄1 𝑉, 𝛿 

⋮
𝑄scheduled𝑛

− 𝑄𝑛 𝑉, 𝛿  
 
 
 
 
 
 

  (16) 

 
Where ∆𝛿1, ∆𝑉1, ∆𝑃load𝑖

 and ∆𝑄load𝑖
 are taken as constants and 

equal to zero. 

 

The inequality constraints are formulated as: 

 The generator real power limits: 

 

∆𝑃gen𝑖
≥  𝑃gen𝑖

min − 𝑃gen𝑖
0 (∀ generators 𝑖) 

 
∆𝑃gen𝑖

≤ (𝑃gen𝑖
max − 𝑃gen𝑖

0)  (∀ generators 𝑖) 

 
 The generator reactive power limits: 

 

∆𝑄gen𝑖
≥ (𝑄gen𝑖

min − 𝑄gen𝑖
0 )(∀ generators 𝑖) 

 
∆𝑄gen𝑖

≤ (𝑄gen𝑖
max − 𝑄gen𝑖

0 ) (∀ generators 𝑖) 

 
 The bus voltage magnitude limits: 

 

 𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ (𝑉𝑖
max − 𝑉𝑖

0 ) (∀ buses 𝑖) 

 
 The phase angle limits: 

 

 𝛿𝑖
min − 𝛿𝑖

0 ≤ ∆𝛿𝑖 ≥ (𝛿𝑖
max − 𝛿𝑖

0 )(∀ buses 𝑖) 

 

D. The Full ACOPF Incremental LP method General 

Formulation: 

 

min  
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖

 

𝑛

𝑖=1

 

 
Subject to: 

 
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆ 𝑉𝑖 +  
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆ 𝛿𝑖 +  
𝜕𝑃𝑖
𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑃gen𝑖
 

 

 
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆ 𝑉𝑖 +  
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆ 𝛿𝑖 +  
𝜕𝑄𝑖

𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑄gen𝑖  

 

 𝑃gen𝑖
0 + ∆𝑃gen𝑖

𝑁gen

𝑖=1

=  𝑃gen𝑖

𝑁gen

𝑖=1

+ 𝑃loss 

 Qgen𝑖
0 + ∆Qgen𝑖

𝑁gen

𝑖=1

=  Qgen𝑖

𝑁gen

𝑖=1

+ Qloss 

 

∆𝑃gen𝑖
≥  𝑃gen𝑖

min − 𝑃gen𝑖
0 (∀ generators 𝑖) 

 

∆𝑃gen𝑖
≤ (𝑃gen𝑖

max − 𝑃gen𝑖
0 ) (∀ generators 𝑖) 

 

∆𝑄gen𝑖
≥  𝑄gen𝑖

min − 𝑄gen𝑖
0 (∀ generators 𝑖) 

 

∆𝑄gen𝑖
≤ (𝑄gen𝑖

max − 𝑄gen𝑖
0 ) (∀ generators 𝑖) 

 

 𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ (𝑉𝑖
max − 𝑉𝑖

0 ) (∀ buses 𝑖)  

 

(𝛿𝑖
min − 𝛿𝑖

0) ≤ ∆𝛿𝑖 ≤ (𝛿𝑖
max − 𝛿𝑖

0) (∀ buses 𝑖)  
 

 𝑡𝑖𝑗
min − 𝑡𝑖𝑗

0 ≤ ∆𝑡𝑖𝑗 ≤  𝑡𝑖𝑗
max − 𝑡𝑖𝑗

0 (∀ transformer 𝑖𝑗) 

 
∆𝑉𝑖ref.

, ∆𝛿𝑖ref.
, ∆𝑃load𝑖

and ∆𝑄load𝑖
= 0   

 
Where𝑡𝑖𝑗  is transformer tap ratio in case of a transformer 

between bus i and j. 
 

3. THE INCLUSION OF REACTIVE POWER COST 

FUNCTION TO THE OBJECTIVE FUNCTION 

Many approaches of reactive power cost allocation are 

introduced such as in [8-11]. Based on [12], the conventional 

reactive power operating cost function is used since 

minimization of total operating cost is only considered: 

 

CostQ𝑖 = profit rate ∗ b ∗ Q𝑖
2  (17) 

 

Where b ≡ the cost coefficient of the input-output cost 
curve. 

Profit rate  the profit rate of the real power and usually 

ranged from 5% to 10%.In this paper the profit rate is taken as 

5% or 0.05.This equation only considers the operating cost of 

reactive power [8]. Linearizing equation (17) using first order 

Taylor series expansion (Eq. 13): 

Fi  Q
geni

 +
dFi Qgeni

 

dQgeni

∆Qgeni
  (18) 

 

Then the objective function of the incremental LPOPF 

becomes: 

min   
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖

+
d𝐹𝑖(𝑄gen𝑖

0)

d𝑄gen𝑖
0 ∆𝑄gen𝑖

 𝑛
𝑖=1  (19) 

 
Subject to: 

 
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆ 𝑉𝑖  +  
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆ 𝛿𝑖 +  
𝜕𝑃𝑖

𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑃gen𝑖
 

 

 
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆ 𝑉𝑖 +  
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆ 𝛿𝑖 +  
𝜕𝑄𝑖

𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑄gen𝑖  
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 𝑃gen𝑖
0 + ∆𝑃gen𝑖

𝑁gen

𝑖=1

=  𝑃gen𝑖

𝑁gen

𝑖=1

+ 𝑃loss 

 Qgen𝑖
0 + ∆Qgen𝑖

𝑁gen

𝑖=1

=  Qgen𝑖

𝑁gen

𝑖=1

+ Qloss` 

∆𝑃gen𝑖
≥  𝑃gen𝑖

min − 𝑃gen𝑖
0 (∀ generators 𝑖) 

 

∆𝑃gen𝑖
≤ (𝑃gen𝑖

max − 𝑃gen𝑖
0 ) (∀ generators 𝑖) 

 

∆𝑄gen𝑖
≥  𝑄gen𝑖

min − 𝑄gen𝑖
0 (∀ generators 𝑖) 

 

∆𝑄gen𝑖
≤ (𝑄gen𝑖

max − 𝑄gen𝑖
0 ) (∀ generators 𝑖) 

 

 𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ (𝑉𝑖
max − 𝑉𝑖

0 ) (∀ buses 𝑖) 

 

(𝛿𝑖
min − 𝛿𝑖

0) ≤ ∆𝛿𝑖 ≤ (𝛿𝑖
max − 𝛿𝑖

0) (∀ buses 𝑖) 
 

 𝑡𝑖𝑗
min − 𝑡𝑖𝑗

0 ≤ ∆𝑡𝑖𝑗 ≤  𝑡𝑖𝑗
max − 𝑡𝑖𝑗

0  ∀ transformer 𝑖𝑗  

 
∆𝑉𝑖ref.

, ∆𝛿𝑖ref.
, ∆𝑃load𝑖

and ∆𝑄load𝑖
= 0 

 
Figure 1 shows the solution algorithm for the Incremental LP 

OPF described in the following flowchart: 

 

 
 

Fig.  1.  Solution Algorithm for the Incremental LP OPF 

4. SIMULATION AND RESULTS 

In order to make the comparison between the incremental LP 

performance before the addition of the VAR cost function 

(described in section 2-D) and  after the addition (the 

proposed formulation of section 3) in different optimization 

aspects such as minimization of total operating cost, 

minimization of total losses and system security improvement, 

an implementation of both formulations was made following 

section 3 solution algorithm in two test systems in order to 

make a decision about the influence of this formulation in the 

optimization process whether it is favorable or not in all 

system types and sizes. The first system is a 6-bus test system 

(data are available in [3]) and the second system is IEEE 30 

bus test system (data are available in [7]). 

 

4.1 Implementation on the 6-bus test system: 

 
 Initial power flow results PF0as shown in Table 1: 

 

Table 1. Initial power flow results 

Bus No. 
Generation 

MW 

Generation 

MVAR 

Bus 

PU Volt 

1 212.96 -10.76 1.07 

2 50 21.76 1.05 

3 50 19.02 1.05 

4 0 0 1.02721 

5 0 0 1.02212 

6 0 0 1.02458 

Total Gen 312.96 30.02 
 

Total losses 12.96 -14.98 
 

Operating cost 4478.91 $/hr. 274.74 $/hr. 
 

Total Cost 4753.65 $/hr. 
  

 

 Incremental LPOPF results before and after adding 

the VAR cost function PF0as shown in Tables2 and 

3. 

Table 2. LPOPF results before addition 

Bus No. 
Generation 

MW 

Generation 

MVAR 

Bus 

PU 

Volt 

Angles 

Radians 

1 110.01 7.18 1.07 0 

2 125.83 -10.8 1.05732 -0.03 

3 71.78 15.81 1.05982 -0.06 

4 0 0 1.02962 -0.09 

5 0 0 1.02867 -0.11 

6 0 0 1.03377 -0.11 

Total Gen 307.62 12.19   

Total 

losses 
7.62 -32.81   

Operating 

cost 
4258$/hr 159.9 $/hr   

Total Cost 4417.92$/hr    

 

Start with a Power 

Flow solution 

Linearize the objective 

function and linearize the 

constraints 

Set the variables limits and 

formulate the problem in an 

LP solver and solve 

Converged with the 

power flow result and 

No transmission 

overload? 

Stop 

Use the generation shift 

factors to relief the 

overloading 
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Table 3.LPOPF results after addition 

Bus No. 
Generation 

MW 

Generation 

MVAR 

Bus 

PU 

Volt 

Angles 

Radians 

1 115 22.26 1.07 0 

2 121.21 -20.18 1.04329 -0.03 

3 71.73 12.42 1.0441 -0.06 

4 0 0 1.01973 -0.09 

5 0 0 1.0171 -0.11 

6 0 0 1.01883 -0.11 

Total Gen 307.94 14.5   

Total 

losses 7.94 -30.5   

Operating 

cost 4263.8 $/hr. 

362.156 

$/hr.   

Total 

Cost 

4625.936 

$/hr.    

 

 Reduction of total operating cost during each 

iteration before and after as shown in Fig. 2: 

 

Fig.  2. Total cost reduction 

 Reduction of total losses during each iteration before 

and after as shown in Fig. 3 and 4: 

 

Fig.  3. Total loss reduction MW 

 

Fig.  4. Total loss reduction MVAR 

 

 Voltage Profile before and after adding the VAR cost 

function as shown in Fig. 5: 

 

Fig. 5.Voltage Profile 

 

Here the inclusion of the VAR cost function did not improve 

the optimization process where total operating cost and total 

losses are increased compared the case before the inclusion 

except that voltage profile is improved. However, in this 

system, the VAR cost function must not be added due to the 

unfavorable effect on the total optimization process while it 

can be used for pricing purposes only. 

 
4.2 Implementation on the IEEE 30 bus test system: 

 
 Initial power flow results PF0PF0as shown in Table 

4: 
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Table 4.Initial Power flow results 

Bus No. 
Generation 

MW 

Generation 

MVAR 

1 260.95 -16.53 

2 40 49.56 

3 0 36.94 

4 0 37.22 

5 0 16.18 

6 0 10.63 

Total Generation 300.95 134 

Total Load 283.4 126.2 

Total Losses 17.55 7.8 

Total Cost 875.256 $/hr. 591.8 $/hr. 

 

 Incremental LPOPF results before and after adding the 

VAR cost functionPF0as shown in Tables 5 and 6: 

 

Table 5: LPOPF results before addition 

Bus No. 
Generation 

MW 

Generation 

MVAR 

1 147.78 7.8 

2 80 -3.83 

3 24.86 30.21 

4 13.82 38.97 

5 10.27 16.03 

6 15.26 10.83 

Total Generation 291.99 100.01 

Total Load 283.4 126.2 

Total Losses 8.59 -26.19 

Real power cost 824.497 $/hr.  

Reactive power cost 355.951 $/hr.  

Total operating cost 1180.448 $/hr.  

 
Table 6.LPOPF results after addition 

Bus No. 
Generation 

MW 

Generation 

MVAR 

1 149.83 11.34 

2 80 3.03 

3 24.67 30.28 

4 15.64 26.65 

5 10 18 

6 12 12.32 

Total Generation 292.14 101.62 

Total Load 283.4 126.2 

Total Losses 8.74 -24.58 

Real power cost 823.515 $/hr.  

Reactive power cost 246.235 $/hr.  

Total operating cost 1069.75 $/hr.  

 Reduction of total operating cost during each 

iteration before and after as shown in fig. 6: 

 

 
Fig. 6.Total cost reduction 

 

 Losses during each iteration before and after as 

shown in fig. 7 and 8: 

 

 

Fig. 7.Total loss reduction MW 

 

Fig. 8.Total loss reduction MVAR 

1050

1100

1150

1200

1250

1300

1350

1400

1450

0 1 2 3 4 5 6

T
o

ta
l 

C
o

st
 $

/h
r.

Iteration

Before

After

7
8
9

10
11
12
13
14
15
16
17
18

0 1 2 3 4 5 6

L
o

ss
 M

W

Iteration

Before

After

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 1 2 3 4 5 6

L
o

ss
 M

V
A

R

Iteration

Before

After



Elfadil Z. Yahia and Momen A. Dahab / UofKEJ Vol. 7 Issue 1, pp. 37-43 (February 2017) 

43 
 

 
 

Fig. 9.Voltage profile 

 

 Voltage Profile before and after adding the VAR cost 

functions shown in Fig. 9: 

 
Here and unlike the 6-bus system, the inclusion of the VAR 

cost function improves the optimization process in total 

operating cost and voltage magnitudes which are reduced by a 

considerable amount than before the inclusion. Despite that 

before the inclusion has an advantage on total loss reduction, 

the addition of the VAR cost function in this system favorably 

affected the total optimization process and therefore it must be 

included. 

5. CONCLUSIONS 

Incremental LP method is very reliable, fast and flexible and it 

can be used in order to solve the OPF problem of any system 

types and sizes. In this paper and by the use of 

POWERWORLD® Simulator and Microsoft® Excel, a 

proposed formulation by adding the VAR cost function to the 

Incremental LPOPF function was presented. An 

implementation of the proposed formulation was made in a 6-

bus system and the IEEE 30 bus system. The aim was to prove 

that this addition can improve the optimization process or not. 

Research proved that this formulation can improve the total 

optimization process but not at all system types and sizes as 

observed in the last section. Therefore, this inclusion affects 

the optimization process favorably and unfavorably, but as 

observed in the IEEE 30 bus system, a significant effect by 

considerable saving of total cost and improvement in voltage 

profile was presented. Therefore, if a trial is made using this 

formulation and favorably affect the optimization process it 

will be a benefit. 
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