Carbon Nanotubes and Their Composites: A Review

G. Goudah, Suliman S.M.A., Elfaki E. A.


Carbon nanotubes have been the focus of considerable research. Numerous investigators have since reported remarkable physical and mechanical properties for this new form of carbon. From unique electronic properties and a thermal conductivity higher than diamond to mechanical properties where the stiffness, strength and resilience exceeds any current material, carbon nanotubes offer tremendous opportunities for the development of fundamentally new material systems. In particular, the exceptional mechanical properties of carbon nanotubes combined with their low density, offer scope for the development of nanotubes reinforced composite materials. The potential for nanocomposites reinforced with carbon tubes having extraordinary specific stiffness and strength represent tremendous opportunity for application in the 21st century. This paper provides an overview of recent advances reported in literature in composites research in the context of reinforcement with carbon nanotubes. Current state of research has indicated the potential of these nanocomposites but at the same time, has illustrated the significant challenges in processing and improving properties


carbon nanotubes; reinforcement; matrix; nanocomposites; processing; polymer; metal; ceramic matrix.

Full Text:



Durand L. P., Composite Mareials Reseach Progress. New York: Nova Science Publishers, Inc., 2008. 2. Borst R. D. and Sadowski T., Lecture Notes on Composite Materials Springer Science + Business Media B.V., 2008. 3. Bhushan B., Handbook of Nanotechnology, 3rd ed.: Springer, 2010. 4. Ajayan P. M., Schadler L. S., and Braun P. V., Nanocomposite Science and Technology. Weinheim: WILEY-VCH Verlag GmbH Co. , 2003. 5. Küçükyıldırım B. O. and Ayşegül Akdoğan Eker, "Mechanical Behavior of Industrial Grade MWCNT and Glass Fiber Reinforced Polyester Hybrid Nanocomposites," International Journal of Arts and Sciences, vol. 3, pp. 252-257, 2010. 6. Manias E., "Nanocomposites: Stiffer by design," Nature Materials, vol. 6, pp. 9-11, 2007. 7. Mgbemena C. O., Ubani N. O., and Mgbemena C. E., "The Effect of Calcium Carbonate at Low Volume Fractions on the Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites," Journal of Engineering and Applied Sciences, vol. 2, pp. 95 - 101, 2010. 8. Chavan S. S., Bhalerao A. .R., and Chavan A., "Nanocomposite by Electrospining and Vartm Process," presented at the Symposium on Composite Products from Concept Design to Manufacturing, 2009. 9. Iijima S., "Helical Microtubules of Graphitic Carbon," Nature vol. 354, pp. 56-58, 07 November 1991 1991. 10. Iijima S. and Ichihashi T., "Single-Shell Carbon Nanotubes of 1-Nm Diameter," Nature, vol. 363, pp. 603-605, 17 June 1993 1993. 11. Breuer O. and Sundararaj U., "Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites," Polymer Composites, vol. 25, pp. 630-645, 2004. 12. Esawi A. M. K. and Farag M. M., "Carbon nanotube reinforced composites: Potential and current challenges " Materials & Design, vol. 28, pp. 2394-2401 2007. 13. Mamalis A. G., Vogtländer L. O. G., and Markopoulos A., "Nanotechnology and nanostructured materials: trends in carbon nanotubes " Precision Engineering, vol. 28, pp. 16-30 2004. 14. Baxendale M., "The Physics and Applications of Carbon Nanotubes," Journal of Materials Science: Material In Electronics, vol. 14, pp. 657-659, 2003. 15. Thostenson E. T., Ren Z., and Chou T.W., "Advances in the science and technologynext term of carbon nanotubes and their previous termcomposites:next term a review," Composites Science and Technology, vol. 61, pp. 1899-1912 2001. 16. Lau A. K.-T. and Hui D., "The revolutionary creation of new advanced materials-carbon nanotube composites " Composites Part B: Engineering, vol. 33, pp. 263-277, 2002. 17. Mauron P., Emmenegger C., Züttel A., Nützenadel C., Sudan P., and Schlapbach L., "Synthesis of oriented nanotube films by chemical vapor deposition," Carbon, vol. 40, pp. 1339-1344 2002. 18. Pipes R. B. and Hubert P., "Helical carbon nanotube arrays: mechanical properties," Composites Science and Technology, vol. 62, pp. 419-428 2002. 19. Salvetat-Delmotte J.-P. and Rubio A., "Mechanical properties of carbon nanotubes: a fiber digest for beginners," Carbon, vol. 40, pp. 1729-1734, 2002. 20. Saether E., Frankland S. J. V., and Pipes R. B., "Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli," Composites Science and Technology, vol. 63, pp. 1543-1550, 2003. 21. Laha T., Agarwal A., McKechnie T., and Seal S., "Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite," Materials Science and Engineering A, vol. 381, pp. 249–258, 2004. 22. Dresselhaus M. S., Dresselhaus G., Charlier J. C., and Hernandez E., "Electronic, thermal and mechanical properties of carbon nanotubes," Philosophical Transactions The Royal Society A, vol. 362, pp. 2065–2098, 2004. 23. Coleman J. N., Khan U., and Gun'ko Y. K., "Mechanical Reinforcement of Polymers Using Carbon Nanotubes," Advanced Materials, vol. 18, pp. 689-706, 2006. 24. Li C., Thostenson E. T., and Chou T.-W., " Sensors and actuators based on carbon nanotubes and their composites: A review,"Composites Science and Technology vol. 68, pp. 1227-1249, 2008. 25. Xie X.-L., Mai Y.-W., and Zhou X.-P., "Dispersion and alignment of carbon nanotubes in polymer matrix: A review," Materials Science and Engineering: R: Reports, vol. 49, pp. 89-112, 2005. 26. Lau K.-t., Gu C., and Hui D., "A critical review on nanotube and nanotube/nanoclay related polymer composite materials," Composites: Part B, vol. 37, pp. 425–436, 2006. 27. Robertson J., "Realistic applications of CNTs," Materials Today, vol. 7, pp. 46-52 2004. 28. Shaffer M. and Kinloch I. A., "Prospects for nanotube and nanofibre composites " Composites Science and Technology, vol. 64, pp. 2281-2282, 2004. 29. Thostenson E. T. and Chou T.-W., "Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization," Journal of Physics D: Applied Physics, vol. 35, pp. L77–L80, 2002. 30. Thostenson E. T., Li C., and Chou T.-W., "Nanocomposites in Context," Composites Science and Technology, vol. 65, pp. 491–516, 2005. 31. Gogotsi Y., Carbon Nanomaterials. New York: Taylor and Francis Group, LLC, 2006. 32. Esawi A. M. K. and Borady M. A. E., "Carbon nanotube-reinforced aluminium strips," Composites Science and Technology, vol. 68, pp. 486–492, 2008. 33. Khare R. and Bose S., "Carbon Nanotube Based Composites- A Review," Journal of Minerals & Materials Characterization & Engineering, vol. 4, pp. 31-46, 2005. 34. Murday J. S., "The Coming Revolution: Science and Technology of Nanoscale Structures," The AMPTIAC Newsletter,, vol. 6, 2002. 35. Tjong S. C., Carbon Nanotube Reinforced Composites :Metal and Ceramic Matrices. Germany: WILEY-VCH Verlag GmbH & Co., Weinheim, 2009. 36. Hiroaki M., Manjusri M., and M. A. K., "Mechanical Properties of Carbon Nanotubes and Their Polymer Nanocomposites " Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1593–1615, 2005. 37. Coleman J. N., Khan U., Blau W. J., and Gun’ko Y. K., "Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites " Carbon, vol. 44, pp. 1624–1652., 2006. 38. Lau K. T., Lu M., and Hui D., "Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures " Composites Part B: Engineering, vol. 37, pp. 437- 448., 2006. 39. Salvetat J.-P., Bhattacharyya S., and Pipes B. R., "Progress on Mechanics of Carbon Nanotubes and Derived Materials," Journal of Nanoscience and Nanotechnology, vol. 6, pp. 1857–1882, 2006. 40. Takashi I., "Overview of trends in advanced composite research and applications in Japan," Advanced Composite Materials, vol. 15, pp. 3-37, 2006. 41. Bokobza L., "Multiwall carbon nanotube elastomeric composites: A review," Polymer Composites, vol. 48, pp. 4907-4920 2007. 42. Peigney A., Laurent C., Flahaut E., and Rousset A., "Carbon nanotubes in novel ceramic matrix nanocomposites " Ceramics International, vol. 26, pp. 677-683 2000. 43. Curtin W. A. and Sheldon B. W., "CNT-reinforced ceramics and metals," Materials Today, vol. 7, pp. 44-49, 2004.

White S. A., Best S. M., and Kinloch I. A., "Hydroxyapatite–Carbon Nanotube Composites for Biomedical Applications: A Review," International Journal of Applied Ceramic Technology, vol. 4, pp. 1-13, 2007. 45. Bakshi S. R., Lahiri D., and Agarwal A., "Carbon Nanotube Reinforced Metal Matrix Composites – a review," International Materials Reviews, vol. 55, pp. 41-64, 2010. 46. Glushanin S., Topolov V. Y., and Krivoruchko A. V., "Features of piezoelectric properties of 0-3 PbTiO3-type ceramic/polymer composites," Materials Chemistry and Physics, vol. 97, pp. 357-364, 2006. 47] Hine P., Broome V., and Ward I., "The incorporation of carbon nanofibres to enhance the properties of self reinforced, single polymer composites," Polymer vol. 46, pp. 10936-10944, 2005. 48. Cioffi N., Torsi L., Ditaranto N., Tantillo G., Ghibelli L., Sabbatini L., Bleve-Zacheo T., D'Alessio M., Zambonin P. G., and Traversa E., "Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties," Chemistry of Materials vol. 17, pp. 5255-5262, 2005. 49. Pelaiz-Barranco A. and Marin-Franch P., "Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate," Applied Physics Reviews, vol. 97, 2005. 50. Huang Z. M., Zhang Y. Z., Kotaki M., and Ramakrishna S., "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites Science and Technology vol. 63, pp. 2223-2253, 2003. 51. Jordan J., Jacob K. I., Tannenbaum R., Sharaf M. A., and Jasiuk I., "Experimental trends in polymer nanocomposites - a review," Materials Science and Engineering , A-Structural Materials Properties ,Microstructure and Processing vol. 393, pp. 1-11, 2005. 52. Gerard J. F., Fillers and filled polymers. Weinheim: Wiley-VCH, 2001. 53. Li J., Ma P. C., Chow W. S., To C. K., Tang B. Z., and Kim J.-K., "Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes," Advanced Functional Materials, vol. 17, pp. 3207–3215, 2007. 54. Bal S. and Samal S. S., "Carbon nanotube reinforced polymer composites–A state of the art," Bulletin of Materials Science, vol. 30, pp. 379–386, 2007. 55. Ma P.-C., Siddiqui N. A., Marom G., and Kim J.-K., "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review," Composites: Part A, vol. 41, pp. 1345–1367, 2010. 56. Rahman A., Ali I., Zahrani S. M. A., and Eleithy R. H., "A Review of the Applications of Nanocarbon Polymer Composites," NANO: Brief Reports and Reviews, vol. 6, pp. 185–203, 2011. 57. Mamedov A. A., Kotov N. A., Prato M., Guldi D. M., Wicksted J. P., and Hirsch A., "Molecular Design of Strong Single-Wall Carbon Nanotube/Polyelectrolyte Multilayer Composites," Nature Materials, vol. 1, pp. 190-194, 2002. 58. Baughman R. H., Zakhidov A. A., and Heer W. A. d., "Carbon Nanotubes-the Route Toward Applications " Science, vol. 297, pp. 787-792, 2002. 59. Sinnott S. B. and Andrews R., "Carbon nanotubes: synthesis, properties, and applications," Critical Reviews in Solid State and Materials Sciences, vol. 26, pp. 145–249, 2001. 60. Chen X., Xia J., Peng J., Li W., and Xie S., "Carbon-nanotube metal-matrix composites prepared by electroless plating "Composites Science and Technology, vol. 60, pp. 301-306 2000. 61. Agarwal A., Bakshi S. R., and Lahiri D., Carbon Nanotubes Reinforced Metal Matrix Composites. Boca Raton: CRC Press,Taylor & Francis Group, 2011. 62. Jorio A., Dresselhaus G., and Dresselhaus M. S., Carbon Nanotubes:Advanced Topics in the Synthesis, Structure, Properties and Applications. Germany: Springer Science+Business Media, 2008. 63. Goh C. S., Wei J., Lee L. C., and Gupta M., "Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes," Materials Science and Engineering: A, vol. 423, pp. 153-156, 2006. 64. Cho J., Boccaccini A. R., and Shaffer M. S. P., "Ceramic matrix composites containing carbon nanotubes," Journal of Materials Science, vol. 44, pp. 1934–1951, 2009. 65. Yamamoto G., Omori M., Hashida T., and Kimura H., "A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties," Nanotechnology, vol. 19, pp. 315701-1315701-7, 2008. 66. Yamamoto G., Omori M., Yokomizo K., Hashida T., and Adachi K., "Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method," Materials Science and Engineering: B, vol. 148, pp. 265-269, 2008. 67. Sheldon B. W. and Curtin W. A., "Nanoceramic composites: Tough to test," Nature Materials, vol. 3, pp. 505-506, 2004. 68. Peigney A., "Composite materials: Tougher ceramics with nanotubes," Nature Materials, vol. 2, pp. 15-16, 2003. 69. Zapata-Solvas E., Go´mez-Garcı´a D., and Domı´nguez-Rodrı´guez A., "On the microstructure of single wall carbon nanotubes reinforced ceramic matrix composites," Journal of Materials Science, vol. 45, pp. 2258–2263, 2010. 70. Cho J., Inam F., Reece M. J., Chlup Z. k., Dlouhy I., Shaffer M. S. P., and Boccaccini A. R., "Carbon nanotubes: do they toughen brittle matrices?," Journal of Materials Science, vol. 46, pp. 4770–4779, 2011. 71. Daoush W. M., Lim B. K., Mo C. B., Nam D. H., and Hong S. H., "Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process," Materials Science and Engineering A, vol. 513-514, pp. 247–253, 2009.


  • There are currently no refbacks.

Sudan Eng. Society Journals