

**Water Requirement and Water Productivity of Cowpea (*Vigna unguiculata* [L.] Walp.) Crop in Two Agro-ecological Zones of Sennar State, Sudan**

Mohamoud A. Mohamoud<sup>1</sup>, Abdalla S. Abdalla<sup>2</sup>, Muna M. Elhag<sup>3</sup>, and Lotfie A. Yousif<sup>4</sup>

**Sennar and Abu Naama Research Stations, ARC, Sudan**

**Abstract:** A field experiment was conducted in two agro-ecological zones in Sennar State, Sudan during seasons 2014/2015 and 2015/2016 to estimate crop water requirement and water productivity of cowpea (*Vigna unguiculata* L. Walp) under three farming systems (conventional farming (CF), conservation agriculture (CA) and Water Harvesting (WH)). The agro-ecological zones were semi-arid zone (Sennar Research Station Farm) and semi-humid zone (Abu Naama Research Station Farm). The Weather and crop data were collected during the study period. CROPWAT 8.0 software was used to compute reference evapotranspiration ( $ET_0$ ), crop factor ( $K_c$ ) and the crop water requirement ( $ET_c$ ). The analysis showed that the average values of  $ET_0$  ranged between 1.2 and 5.0 mm/day in semi-arid zone, and between 1.56 and 4.86 mm/day in the semi-humid zone. The average  $K_c$  values during the initial, development, mid-season and late-season stages were 0.45, 0.79, 1.08 and 0.84, respectively, while the average values of cowpea water requirements during initial, development, mid-season and late-season stages were 37.4, 71.3, 149.5 and 77.0 mm for the semi-arid zone and 34.1, 65.8, 130.6 and 77.3 mm for the semi-humid zone. The

---

<sup>1</sup> Assistant Research Professor, Sennar Research Station, ARC, Sudan

<sup>2</sup> Associate Professor, Faculty of Agricultural Sci., University of Gezira, Sudan

<sup>3</sup> Associate Professor, Water Management and Irrigation Institute, University of Gezira, Sudan

<sup>4</sup> Professor, Agricultural Engineering, Shambat Research Station, ARC, Sudan

average water requirement was 3350 m<sup>3</sup>/ha and 3050 m<sup>3</sup>/ha in the semi-arid and semi-humid zones, respectively. The water productivity for cowpea crop in the semi-arid zone was 0.33 kg/m<sup>3</sup> and 0.35 kg/m<sup>3</sup> in semi-humid zone. The WH and CA farming system gave better results compared to the CF for cowpea production in dryland areas of Sennar state.

**Key words:** Reference evapotranspiration (ET<sub>0</sub>), crop factor (K<sub>c</sub>), semi-arid zone, semi-humid zone, cowpea crop

## INTRODUCTION

Cowpea (*Vigna unguiculata* [L.] Walp) is a vital crop for millions of poorer people. It is a food and feed crop grown in the semi-arid tropics covering Africa, Asia, Europe, United States and Central and South America (IITA, 2009; Bittenbender *et al.*, 1984; Islam *et al.*, 2006). Moreover, cowpea hay has additional economic value as it is used as fodder especially during the dry season (Singh *et al.*, 2003). It is estimated that the annual world cowpea crop is grown on 12.5 million ha, and the total grain production is 3 million tons. Cowpea is drought-tolerant crop; it can grow under annual rainfall ranging from 400 to 700 mm, well distributed rainfall is important for normal growth and development of cowpea. However, in areas where the frequency of rain is unreliable, moisture conservation remains vitally important for crop production. Cowpea reacts to serious moisture deficit by limiting growth (especially leaf growth) and reducing leaf area by changing leaf orientation and closing the stomata. Smallholder farmers in sub-Saharan Africa produce cowpea under rainfed conditions (Wright *et al.*, 2008) because of its low water requirement and fast-growing with high forage quality (Rao and Shahid, 2011). Cowpea can be grown under dry condition; however, irrigation highly promotes its vegetative growth and results in late maturity of seeds (Peksen, 2007).

The crop growth habit cover the soil surface thus reduces competition with weeds and soil surface evaporation, allowing the crop to save water and have greater growth and yield (Payne, 2000). Some studies showed that the characteristics of the tested cowpea varieties were of medium maturing (75 to 80 days) and high grain yield about 500 to 2000 kg/ha, (Kamara *et al.*, 2007; Ajeigbe *et al.*, 2008). It is an alternative crop to

more viable and competitive agriculture, with less risk of losses, especially for farmers with low income and small crop areas. Cowpea can be intercropped with other crops such as maize (Dahmardeh *et al.*, 2009), sorghum (Ahmad *et al.*, 2007), millet (Pimentel, 2006; Sprent, 2010) and guar (Rao and Shahid, 2011). In the rainfed areas of the Sudan, cowpea found special research focuses (Dawoud, *et al.*, 2007; Hassan and Elasha, 2008).

Determination of crop water requirement is not only necessary for water resources management and planning in irrigated sector; but also for selecting and managing crops in rainfed sector. Crop water requirement (CWR) or crop reference evapotranspiration ( $ET_C$ ) is the quantity of water utilized by a crop for obtaining maximum yield in a particular area. Doorenbos and Pruitt (1977), Allen *et al.* (1998) and Hess (2005) defined CWR as the total water needed to compensate evapotranspiration from planting to harvest for a given crop in a specific climatic zone.

Crop water productivity (CWP) is defined as amount or the value of product over volume of water depleted or diverted (Kijne *et al.*, 2003; Molden *et al.*, 2007). It is usually expressed in amount of crop produced per unit of water ( $\text{Kg/m}^3$ ). Increasing the productivity of water in agriculture plays a vital role in easing competition for scarce water resources, prevention of environmental degradation and achieving of food security (Molden *et al.*, 2003; Schultz *et al.*, 2009). Kijne *et al.* (2003) suggested several strategies for enhancement of agricultural CWP by integrating varietal improvement and better resource management at plant level, field level and agro-climatic level. Increasing CWP could be achieved through implementation of suitable management practices such as selection of suitable variety, optimum-sowing date and other management practices. This needs knowledge about the water requirement in each growth stage of the crop. However, there is insufficient information about water requirement and water productivity of cowpea crop in rainfed areas of Sudan. Rainfed agriculture in Sennar State, Sudan extends through two agro-ecological zones, semi-arid and semi-humid zones. Cowpea is one of the crops produced in these areas.

The objective of this study was to determine the water requirement and water productivity of cowpea crop in two agro-ecological zones of Sennar State under three farming systems.

## **MATERIALS AND METHODS**

### **Study sites**

The research work was carried out in the rainfed areas of Sennar State, where rainfall is the main source of watering crops. The State encompasses two agro-ecological zones; the semi-arid zone in the northern part and semi-humid zone in the southern part (Adam, 2005). The soil is heavy clay with high crack density (Vertisols), with low nitrogen and organic carbon content. The annual rainfall is about 250 to 400 mm in the semi-arid zone and 500 to 700 mm, in the semi-humid zone. Rainfall varies in amount and distribution from season to another and within the same season. There is a single rainy season and the effective rainfall occurs in summer from July to October.

A field experiment was conducted in two locations in Sennar State during two consecutive seasons 2014/2015 and 2015/2016. The first location was Sennar Research Station Farm, which lies in the northern part of the State altitude 13° 33' N and longitude 33° 36' E, representing the semi-arid zone. The second location was Abu Naama Research Station Farm which lies in the southern part of the State at latitude 12° 44' N and longitude 34° 7' E, representing semi-humid zone.

### **Data collection and analysis**

Three farming systems; conventional farming system (CF), conservation agriculture (CA) and water harvesting system (WH); were used in this study. The cowpea crop was sown at a seed rate of 19.04 kg/ha in the two sites. In seasons 2014/2015, the experiment started on the 16<sup>th</sup> of July for both sites; and in season 2015/2016, the experiment started on the 5<sup>th</sup> of August in Abu-Naama and on 12<sup>th</sup> of August in Sennar. The experimental plots were kept weed free during the growing period.

Daily rainfall data throughout the growing seasons were collected from rain gauges located at the experimental sites. Moreover, the data were arranged in 10-days interval. On the other hand, cowpea yield data were

taken from the tested farming systems and used to compute water productivity.

## **Crop water requirement (CWR)**

The water requirement for cowpea crop was determined by using CROPWAT 8.0 program (Allen *et al.*, 1998) for the two sites. The input data used to run the program included weather data, soil physical properties and crop characteristics. The weather data used to determine  $ET_0$  were maximum and minimum temperature; relative humidity, wind speed, sunshine hours and rainfall which obtained from Sennar and Abu Naama Metrological Stations during the period from first of May to the end of November for 2014/2015 and 2015/2016 seasons. The  $ET_0$  was calculated in decadal base during the growing season.

## Computation of crop coefficient ( $K_c$ )

The standard values of crop coefficient ( $K_c$ ) for growth stages of cowpea were taken from FAO paper No. 56. The values of  $K_c$  were 0.40, 1.05 and 0.35 for early, mid and late seasons, respectively. However, the CROPWAT 8.0 software adjusted these  $K_c$  values to local conditions according to the equation described by (Allen *et al.* 1998) as follows:

Where:

i = day number within the growing season

$K_{ci}$  = crop coefficient for day  $i$ .

$L_{\text{stage}}$  = length of the stage under consideration (day)

$\Sigma(L_{\text{prev}})$  = sum of the lengths of all previous stages (day)

The total growing period for cowpea was 90 to 100 days from sowing to harvest. This period was divided into four growing stages; initial, development, mid-season and late-season stages, the length of these stages was 20, 25, 30 and 25 days, respectively.

## Crop water requirement

The crop water requirement was calculated according to the procedure described by Allen *et al.* (1998) using equation 2 as follows:

Where:

$ET_c$  = Crop evapotranspiration (mm/day).

ET<sub>o</sub> = Reference evapotranspiration (mm/day)

$K_c$  = Crop coefficient (dimensionless).

The crop water requirement for cowpea was calculated on decadal base throughout the growing period and summed up to the end of the season. The growing period was 10 and 9 decades for the first and the second seasons, respectively. As the second season has lower rainfall, the crop completed its cycle in 9 decades. Moreover, rainfall data (rainfall amount (mm) and rainy days), were compared to the crop water requirement for each decade during the growing seasons.

## Water productivity

The water productivity (WP) was calculated by dividing the cowpea grain yield (kg/ha) of the each farming system by the total crop water requirement for cowpea ( $\text{m}^3/\text{ha}$ ). Equation 3 describes the calculation procedure for the WP (Loomis, 1983). The cowpea grain yield was obtained from each farming system.

$$WP = \frac{yield \left( \frac{kg}{m^2} \right)}{water used \left( \frac{m^3}{m^2} \right)} \left( \frac{kg}{m^3} \right) \dots \dots \dots \quad (3)$$

## RESULT AND DISCUSSION

The computed reference evapotranspiration ( $ET_O$ ) according to the local conditions in Sennar and Abu Naama Research Stations in both seasons is shown in Table 1. The average  $ET_O$  during the growing season ranged between 1.2 and 5.0 mm/day in Sennar Research Station and between 1.56 and 4.86 mm/day in Abu Naama Research Station, for the seasons 2014/2015 and 2015/2016, respectively. In both sites, the highest average values of  $ET_O$  coincided with the year of lower rainfall. The results showed that the value of the  $ET_O$  for the third decade of August in the Sennar sites during both seasons was the highest among the values of  $ET_O$  in other decades during both growing seasons. These higher values of  $ET_O$  were due to the higher values of relative humidity (RH %) during August for two sites and seasons. Allen *et al.* (1998) mentioned that weather

parameters affecting evapotranspiration are radiation, air temperature, humidity and wind speed.

Table 1. The calculated  $ET_O$  for cowpea (mm/decade) in Sennar and Abu Naama Research Stations for two seasons(2014/2015 and 2015/2016)

| <b>Month-decade</b> | <b>Sennar Research Station</b> |                  | <b>Abu Naama Research Station</b> |                  |
|---------------------|--------------------------------|------------------|-----------------------------------|------------------|
|                     | Season 2014/2015               | Season 2015/2016 | Season 2014/2015                  | Season 2015/2016 |
| Jul-II              | 22.0                           | -                | 17.6                              | -                |
| Jul-III             | 48.3                           | -                | 48.6                              | -                |
| Aug-I               | 43.4                           | -                | 43.7                              | 35.3             |
| Aug-II              | 43.7                           | 40.2             | 44.1                              | 38.8             |
| Aug-III             | 48.3                           | 50.0             | 46.7                              | 42.4             |
| Sep-I               | 44.5                           | 45.4             | 40.9                              | 37.9             |
| Sep-II              | 45.1                           | 46.0             | 39.4                              | 37.4             |
| Sep-III             | 43.2                           | 45.4             | 39.3                              | 38.7             |
| Oct-I               | 41.8                           | 44.8             | 39.2                              | 40.4             |
| Oct-II              | 12.1                           | 44.1             | 15.6                              | 41.9             |
| Oct-III             | -                              | 45.7             | -                                 | 45.6             |
| Nov-I               | -                              | 34.8             | -                                 | -                |
| Average             | 39.2                           | 43.7             | 37.5                              | 39.8             |

The crop coefficient ( $K_c$ ) was calculated on decadal base for both sites and the two seasons as shown in Table 2. The values of  $K_c$  increased steadily with advancement of crop stage until it reached its peak value at the mid stage and then, started to decline. Mohammed *et al.* (2016) found similar trend of  $K_c$  values during the growing stages of maize crop under Gezira conditions, Sudan. The values of crop coefficient ( $K_c$ ) of cowpea in the two sites during the initial stage ranged between 0.40 and 0.53. In the development stage, the  $K_c$  increased from 0.50 to 1.05. The maximum value of  $K_c$  during mid-stage was between 1.05 and 1.11 and it declined gradually from 1.10 to 0.38 in the late-season stage. The results revealed that the overall average values of  $K_c$  during the initial, development, mid-season stage and late-season stage were 0.46 - 0.45, 0.80 – 0.79, 1.10 – 1.07 and 0.80 – 0.89 for semi-arid and semi-humid zones, respectively.

The calculated average values of  $K_c$  for the cowpea crop were higher than that obtained by Allen *et al.* (1998) who found that the  $K_c$  values for cowpea crop were 0.40, 1.05 and 0.35 during the initial, mid-season, and end-season stages, respectively.

Table 2. The calculated  $K_c$  for cowpea in Sennar and Abu Naama Research Stations on decadal base for two seasons (2014/2015 and 2015/2016)

| Month-decade | Sennar Research Station |                  | Abu Naama Research Station |                  |
|--------------|-------------------------|------------------|----------------------------|------------------|
|              | Season 2014/2015        | Season 2015/2016 | Season 2014/2015           | Season 2015/2016 |
| Jul-II       | 0.40                    | -                | 0.50                       | -                |
| Jul-III      | 0.40                    | -                | 0.50                       | -                |
| Aug-I        | 0.50                    | -                | 0.63                       | 0.40             |
| Aug-II       | 0.92                    | 0.50             | 0.85                       | 0.40             |
| Aug-III      | 1.09                    | 0.53             | 1.05                       | 0.63             |
| Sep-I        | 1.09                    | 0.76             | 1.07                       | 1.05             |
| Sep-II       | 1.08                    | 1.00             | 1.07                       | 1.10             |
| Sep-III      | 0.87                    | 1.11             | 1.07                       | 1.10             |
| Oct-I        | 0.57                    | 1.11             | 1.06                       | 1.05             |
| Oct-II       | 0.38                    | 1.11             | 1.06                       | 0.78             |
| Oct-III      | -                       | 1.10             | -                          | 0.48             |
| Nov-I        | -                       | 1.08             | -                          | -                |
| Average      | 0.73                    | 0.92             | 0.89                       | 0.78             |

Tables 3 and 4 illustrate the water requirement for cowpea crop during the two growing seasons on decadal base in Sennar and Abu Naama sites, respectively. The results showed that, for the two sites and seasons, the crop water requirement increased from early stage to the mid stage and then decreased at late stage. Several studies showed similar trend of water requirements during the different growing stages of other crops (Alla Jabow *et al.*, 2013; Mohamed *et al.*, 2016; Mohammed *et al.*, 2016).

The total water requirement for cowpea crop in semi-arid zone was 305.9 mm in the first season and 364.1 mm in the second season. The overall average values of water requirements during the initial, development, mid-season and late-season stages, were 37.4, 71.3, 149.5 and 77.0 mm,

respectively. These values of water requirements for these stages represented 11.1%, 21.3%, 44.6% and 23.0%, respectively of the total water requirements. On the other hand, the total water requirement in semi-humid zone was 333.2 mm in the first season and 276.8 mm in the second season. In the semi-humid zone, the average values of water requirements during the initial, development, mid-season and late-season stages, were 31.4, 65.8, 130.6 and 77.3 mm, respectively. These values of water requirements for these stages represented 10.3%, 21.6%, 42.8% and 25.3%, respectively of the total water requirements. The average water requirement for cowpea crop was 3350m<sup>3</sup>/ha in semi-arid zone and it was 3050 m<sup>3</sup>/ha in semi-humid zone. This indicated that semi-arid areas of Sennar State require more water than semi-humid areas. The variation in total water requirement for cowpea crop between sites and seasons may be due to the differences in the locations and variations in climate conditions as well as the variations in sowing date in both seasons. Many studies showed that crop water requirement for the same crop varied from season to another (Alla Jabow *et al.*, 2013; Mohamed *et al.*, 2016).

The analysis showed the two sites received rainfall higher than the water required by crop during the early stages of crop growth in both seasons (Tables 3 and 4). However, during the late critical stages of the crop growth, the received rainfall was less than the required water in both seasons. The rain distribution during the growing season affects crop performance and final yield. Manyathi (2014) mentioned that the water stress during reproductive and yield formation stages lead to losses in yield and poor seed quality. Therefore, planting dates of cowpea should be adjusted so that growth stages with high water demand can occur in months with higher rainfall also, other management practices such the use of water-harvesting techniques should be considered (Assefa *et al.*, 2010).

In both sites, the total rainfall received during the first growing season was higher than that in the second season. In Sennar site, the total rainfall was 371.2 mm and 261.4 mm and it occurred in 30 days and 18 days for both seasons, respectively. In Abu Naama site, the total rainfall was 507 mm and 307 mm and it occurred in 30 days and 21 days for both seasons, respectively. Although, Sennar had lower rainfall compared to Abu Naama, it had better rainfall distribution. In the semi-arid zone (Sennar site) the season of lower rainfall coincided with higher water requirement.

Hence, the success of production systems in rainfed areas is not only due to the total amount of rainfall, but distribution as well (Feitosa *et al.*, 2017).

Table 3. Water requirement for cowpea crop at Sennar site for two seasons

| Month-decadal    | Rain (mm) | Rainy days | ETc (mm) | Rain (mm)        | Rainy days | ETc (mm) |
|------------------|-----------|------------|----------|------------------|------------|----------|
| Season 2014/2015 |           |            |          | Season 2015/2016 |            |          |
| Jul-II           | 9.9       | 4          | 8.8      | 0                | 0          | -        |
| Jul-III          | 113.0     | 6          | 19.3     | 0                | 0          | -        |
| Aug-I            | 6.3       | 3          | 21.7     | 0                | 0          | -        |
| Aug-II           | 85.5      | 4          | 40.2     | 134.5            | 5          | 20.1     |
| Aug-III          | 81.7      | 6          | 52.7     | 42.1             | 6          | 26.5     |
| Sep-I            | 41.4      | 3          | 48.5     | 19.9             | 3          | 34.5     |
| Sep-II           | 33.4      | 4          | 48.7     | 61.9             | 3          | 46.1     |
| Sep-III          | 0         | 0          | 37.6     | 3.0              | 1          | 50.4     |
| Oct-I            | 0         | 0          | 23.8     | 0                | 0          | 49.7     |
| Oct-II           | 0         | 0          | 4.6      | 0                | 0          | 48.9     |
| Oct-III          | 0         | 0          | -        | 0                | 0          | 50.3     |
| Nov-I            | 0         | 0          | -        | 0                | 0          | 37.6     |
| Total CWR        | 371.2     | 30         | 305.9    | 261.4            | 18         | 364.1    |

Figures 1 and 2 compare the average (of two seasons) water productivity ( $\text{kg}/\text{m}^3$ ) of cowpea for the three farming systems in Sennar and Abu Naama Research sites, respectively. The overall average water productivity of cowpea crop in rainfed areas of Sennar and Abu Naama Research Stations were  $0.33 \text{ kg}/\text{m}^3$  and  $0.35 \text{ kg}/\text{m}^3$ , respectively. Abu Naama site being of higher rainfall exceeded the water productivity of the Sennar site which characterized by lower rainfall by about 6.1%.

Improving water productivity is a key factor for the success of agricultural production in the arid and semi-arid regions (Xiao *et al.*, 2016). The results of water productivity for the three farming systems showed some variations. Irrespective of the experimental site, the water harvesting (WH) gave the highest water productivity followed by conservation

agriculture (CA) and the least water productivity was given from the conventional farming system (CF) (Figs. 1 and 2).

Table 4. Water requirement for cowpea crop at Abu-Naama site for two seasons

| Month-decadal    | Rain (mm) | Rainy days | ETc (mm) | Rain (mm)        | Rainy days | ETc (mm) |
|------------------|-----------|------------|----------|------------------|------------|----------|
| Season 2014/2015 |           |            |          | Season 2015/2016 |            |          |
| Jul-II           | 24.2      | 3          | 8.8      | 0                | 0          | -        |
| Jul-III          | 98.8      | 7          | 24.3     | 0                | 0          | -        |
| Aug-I            | 58.6      | 2          | 27.5     | 105.5            | 7          | 14.1     |
| Aug-II           | 71.7      | 4          | 37.5     | 119.4            | 3          | 15.5     |
| Aug-III          | 175.9     | 5          | 49.0     | 38.8             | 4          | 26.7     |
| Sep-I            | 38.9      | 3          | 43.8     | 25.2             | 3          | 39.8     |
| Sep-II           | 13.4      | 2          | 42.2     | 17.0             | 3          | 41.1     |
| Sep-III          | 15.0      | 1          | 42.0     | 1.6              | 1          | 42.6     |
| Oct-I            | 4.8       | 1          | 41.6     | 0                | 0          | 42.4     |
| Oct-II           | 5.5       | 2          | 16.5     | 0                | 0          | 32.7     |
| Oct-III          | 18.7      | 1          | -        | 0                | 0          | 21.9     |
| Total CWR        | 506.8     | 30         | 333.2    | 307.5            | 21         | 276.8    |

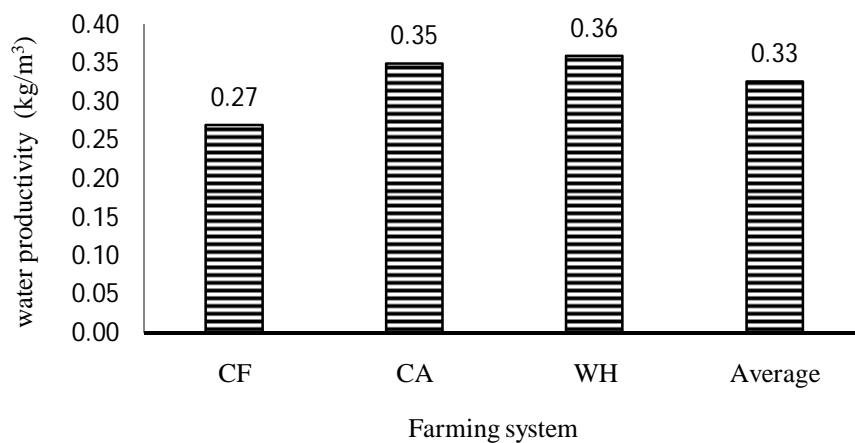



Fig. 1. Water productivity of cowpea crop under different farming systems at Sennar site for seasons 2014/2015 and 2015/2016

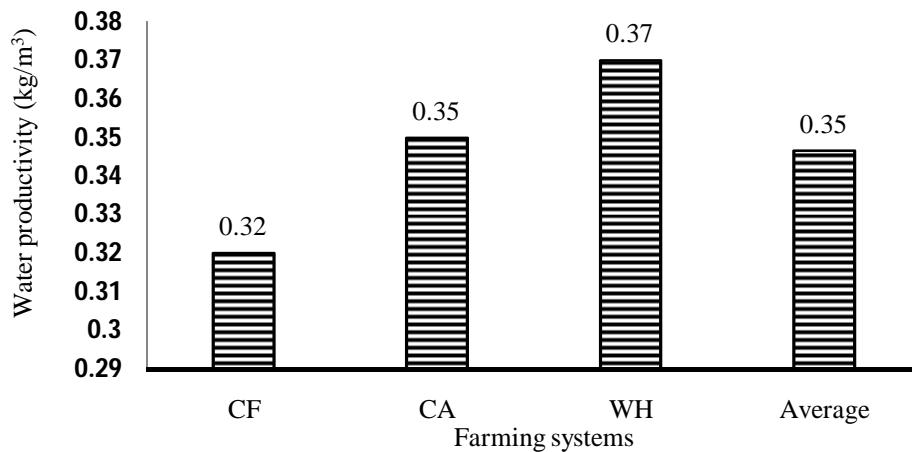



Fig.2. Water productivity of cowpea crop under different farming systems at Abu Naama site for seasons 2014/2015 and 2015/2016

## CONCLUSIONS

1. The average water requirements of cowpea crop in the semi-arid zone and in the semi-humid zone were  $3350 \text{ m}^3/\text{ha}$  and  $3050 \text{ m}^3/\text{ha}$ , respectively. Cowpea crop in the zone of higher rainfall demands lower water amount.
2. The water requirements of cowpea crop in the initial, development, mid-season and late-season stages were 37.4, 71.3, 149.5 and 77.0 mm; and 34.1, 65.8, 130.6 and 77.3 mm, for semi-arid zone and semi-humid zone, respectively.
3. The overall average values of water productivity for cowpea crop were  $0.33 \text{ kg/m}^3$  in semi-arid zone and  $0.35 \text{ kg/m}^3$  in semi-humid zone. The water productivity of cowpea in semi-humid zone was better than that of semi-arid zone.
4. Both water harvesting techniques and conservation agriculture farming system performed better than the conventional farming for cowpea production in the rainfed areas of Sennar State.

## REFERENCES

Adam, H. S. 2005. *Agro-climatology, Crop Water requirement and Water Management*, Gezira Company for printing and publishing, Wad Medani, Sudan.

Ahmad, U.H.A., Ahmad, R., Mahmood, N., and Tanveer, A. 2007. Performance of forage sorghum intercropped with forage legumes under different planting patterns. *Pak. J. Botany.* 39(2): 431-439.

Ajeigbe, H. A., Ihedioha, D., and Chikoye, D. 2008. Variation in physico-chemical properties of seed of selected improved varieties of Cowpea as it relates to industrial utilization of the crop. *African Journal of Biotechnology* 7:3642-3647.

Alla Jabow, M. K., Salih, A. H., Mohamed, A. H., and Ahmed, B. M. 2013. Crop water requirements for tomato, common bean and chickpea in Hudeiba, River Nile State, Sudan. *Sudan J. Agric. Res.* 22: 11- 22.

Allen, R. G., L. S. Pereira, D. Raaes, and Smith, M. 1998. Crop evapotranspiration. guidelines for computing crop water requirement, FAO, Irrigation and Drainage, Paper 56. United Nation. Rome. Italy.

Assefa, Y., Staggenborg, S. A., and Prasad, V. P. V. 2010. Grain sorghum water requirement and responses to drought stress: A review. Online. *Crop Management* do: 10.1094/CM-2010-1109-01-RV.

Bittenbender, H. C., Barret, R. P., and Indire-Lauvs, B. M. 1984. Beans and cowpeas as leaf vegetables and grains legumes. Monograph No. 1 Bean/Cowpea Collaborative Research Support Programme. Michigan State University, East Lansing.

Dahmardeh, M., Ghanbari,A.,Sayasar,B., and Ramroudi,M. 2009. Effect of intercropping maize (*Zea mays L.*) with cowpea (*Vigna unguiculata L.*) on Green forage yield and quality evaluation. *Asian Journal of Plant Science* 8(3): 235-239.

Dawoud, D. A., Ahmed, E. A., Abdalla N. K., and Babiker, A. G. T. 2007. Influence of intercropping of sorghum (*Sorghum bicolor L. Moench*) with hyacinth (*Lablab purpureous L.*) on *Striga*

*hermonthica* control and sorghum growth and yield. Sudan J. Agric. Res. 10:101-106.

Doorenbos, J. and Pruitt, W. O. 1977. Guide lines for predicting crop water requirement. FAO Irrigation and drainage paper no.24, United Nations, Rome, pp.144.

Feitosa, E. O., Araújo, A. F. B., Oliveira, C. M. B., Lopes, F. B., and de Andrade, E. M. 2017. Productivity and water-use efficiency of sorghum in rainfed regime in the semi-arid region of Brazil. American Journal of Plant Sciences, 8, 2133-2148 <http://www.scirp.org/journal/ajps>.

Hassan, A. E., and Elasha, A. E. 2008. Intercropping effects using local cowpea on *Striga hermonthica* (Del.) Benth. Control and grain yield of *Sorghum bicolor* (L.) Moench. Sudan J. Agric. Res. 11:53-60.

Hess, T. 2005. Crop Water Requirements, Water and Agriculture, Water for Agriculture, WCA info NET.

IITA, International Institute of Tropical Agriculture.2009. Crops. Accessed 15 March 2010. Available at: <http://www.iita.org>.

Islam, S., Cowmen, R.C., and Ganer, J. O. 2006. Screening for tolerance of stress temperature during germination of twenty-five cowpea (*Vigna unguiculata* L. Walp) cultivars. Journal of Food, Agriculture and Environment 4(2): 189- 191.

Kamara A.Y., Chikoye, D., Omoigui, L.O., and Dugje, I. Y.2007. Cultivar and insecticide spraying regimes effects on insect pest and grain yield of cowpea in the dry savannas of north-eastern Nigeria. African Crop Science Proceedings 8:179-184.

Kijne, J.W., Tuong, T.P., Bennett, J., Bouman, B., and Oweis, T. 2003. Ensuring food security via improvement in crop water productivity. In: *Challenge program on water and food:*

*background papers to the full proposal.* The challenge program on water and food consortium, Colombo, Sir Lanka.

Loomis, R. S. 1983. Crop Manipulations for Efficient Use of Water: An Overview. In: *Limitations to Efficient Water Use in Crop Production*, H.M. Taylor, W.R Jordan, and T. R. Sinclair (Eds.), American Society of Agronomy, Crop Society of America, and Soil Science Society of America, Madison, 345-374.

Manyathi, T. 2014. *Water productivity of selected sorghum varieties.* M.Sc. Thesis, School of Agricultural, Earth and Environmental Sciences College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.

Mohamed, M. A., Mohammed-Khair, M. A., and Adam, H. S. 2016. The crop coefficient of Barley (*Hordeum vulgare*) under Gezira conditions. U. of K. J. Agric. Sci. 24(1): 75 – 88.

Mohammed, H. M., Adam, H. S., Idris, S. E., and Muhieldeen, O. A. 2016. Determination of crop coefficient, water requirements and water productivity for maze (*Zea mays L*) under central Gezira clay soil conditions, Sudan. Gezira J. Agric. Sci. 14(2): 102 – 114.

Molden, D. J., Oweis, T. Y., Steduto, P., Kijne, J. W., Hanjra, A. H., and Bindraban, P. S. 2007. Pathways for increasing agricultural water productivity. In: *Water for food, water for life: a comprehensive assessment of water management in agriculture*, D. Molden (ed.) Earthscan, London and International Water Management Institute, Colombo, Srilanka, p. 279-310.

Molden, D., Murray-Rust, H., Sakthivadivel, R. and Makin, I. 2003. A water productivity Frame work for Understanding and Action. In: *Water productivity in agriculture: Limits and Opportunities for Improvement*, J.W. Kijne (ed.). CABI, ISBN No.0851996698, Wallingford, United Kingdom:

Payne, W. A. 2000. Optimizing crop water use in sparse stands of pearl millet. Crop Science, Madison 92 (5): 808-814.

Peksen, E. 2007. Yield performance of cowpea (*Vigna unguiculata* L. Walp) cultivars under rainfed and irrigated conditions. International Journal of Agricultural Research 2(4): 391-396.

Pimentel, C. 2006. Efficiency of nutrient use by crops for low input agro-environments. In: *Focus on plant agriculture: I Nitrogen nutrition in plant productivity*, R. P. Singh (ed.). Houston: Studium Press, p. 277-328.

Rao, N. K. and Shahid, M. 2011. Potential of cowpea (*Vigna unguiculata* (L.) Walp) and guar (*Cyamopsis tetragonoloba* (L.) Taub.) as alternative forage legumes for the United Arab Emirates. Emir. J. Food Agric 23 (2): 147-156.

Schultz, B., Tardieu, H., and Vidal, A. 2009. Role of water management for global food production and poverty alleviation. Irrigation and Drainage 58 (1): 13-21.

Singh, B.B., Ajeigbe, H. A., Tarawali, S., A. Fernandez-Rivera, S., and Abubakar, M. 2003. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 84:169- 175.

Sprent, J. I. 2010. African legumes: a vital but under-utilized resource. Journal of Experimental Botany, Oxford 61(5): 1257–1265.

Wright, D., Marois, J., Rich, J., and Sprenkel, R. 2008. Field Corn Production Guide-SS-AGR-85. Fromat: <http://edis.ifas.ufl.edu/pdf>.

Xiao, G.J., Zhang, F.J., Huang, J.Y., Luo, C.K., Wang, J., Ma, F., Yao, Y.B. Wang, R.Y., and Qius, Z.J. 2016. Response of bean cultures' water use efficiency against climate warming in semiarid regions of China. Agricultural Water Management, 173, 84-90. <https://doi.org/10.1016/j.agwat.2016.05.010>.

الاحتياج المائي وإنتجية المياه لمحصول اللوبية (*Vigna unguiculata* [L.] Walp.) في  
بيئتين زراعيتين في ولاية سنار، السودان

محمود عبدالله محمود<sup>1</sup> وعبدالله سليمان عبدالله<sup>2</sup> ومنى محمد الحاج<sup>3</sup> ولطفي عبدالرحمن يوسف<sup>4</sup>

محطي بحوث سنار وأبونعامة، هيئة البحوث الزراعية، ولاية سنار، السودان

**مستخلاص البحث:** نفذت تجربة حقلية في بيئتين زراعيتين في ولاية سنار، السودان خلال موسمي 2014/2015 و 2015/2016، لتقدير الاحتياج المائي وإنتجية المياه لمحصول اللوبية (*Vigna unguiculata* L. Walp) تحت ثلاثة نظم زراعية، هي نظام الزراعة التقليدية (CF)، ونظام الزراعة الحافظة (CA) ونظام حصاد المياه (WH). البيانات الزراعية هي المنطقية شبه الجافة (مزرعة محطة بحوث سنار) والمنطقة شبه الرطبة (مزرعة محطة بحوث أبو نعامة). تم جمع البيانات المناخية بالإضافة إلى إنتاجية المحصول خلال فترة الدراسة. استخدم برنامج CROPWAT 8.0 لحساب كل من البخرنتح ( $ET_c$ )، معامل المحصول ( $K_c$ ) والاحتياج المائي للمحصول ( $ET_c$ ). أوضح الحليل أن القيم المتوسطة للبخرنتح المرجعي ( $ET_0$ ) خلال الموسمين تراوحت بين 1.2 و 5.0 مم/اليوم في المناطق شبه الجافة وبين 1.56 و 4.86 مم/اليوم في المنطقة شبه الرطبة. القيم المتوسطة لمعامل المحصول ( $K_c$ ) خلال المرحلة الأولية، والنماء، ومنتصف الموسم، ونهاية الموسم كانت 0.45 ، 0.79 ، 0.45 ، 0.79 ، 0.84 على التوالي. كان متوسط قيم الإحياجات المائية خلال المرحلة الأولية، والنماء، ومنتصف الموسم، ونهاية الموسم هي 37.4 ، 71.3 ، 149.5 و 77.0 مم وكانت 34.1 ، 65.8 ، 130.6 و 77.3 مم في المناطق شبه الجافة وشبه الرطبة على التوالي. بلغ متوسط الاحتياج المائي لمحصول اللوبية 3050 و 3050 متر<sup>3</sup> هكتار في المناطق شبه الجافة وشبه الرطبة على التوالي. كانت القيم المتوسطة لإنتجية المياه لمحصول اللوبية في المنطقة شبه الجافة 0.33 كجم/متر<sup>3</sup> و 0.35 كجم/متر<sup>3</sup> في المنطقة شبه الرطبة. إن نظمي حصاد المياه والزراعة الحافظة أعطينا أفضل النتائج مقارنة بالزراعة التقليدية لإننتاج محصول اللوبية في المناطق المطوية لولاية سنار.

<sup>1</sup>أستاذ باحث مساعد ، محطة أبحاث سنار ، مركز البحوث الزراعية ، السودان

<sup>2</sup>أستاذ مشارك ، كلية العلوم الزراعية ، جامعة الجزيرة ، السودان

<sup>3</sup>أستاذ مشارك ، معهد إدارة المياه والري ، جامعة الجزيرة ، السودان

<sup>4</sup>أستاذ في الهندسة الزراعية ، محطة أبحاث شببات ، مركز البحوث الزراعية ، السودان