Volume 6, Issue 1, February 2014

Open % Access

Sudan Journal of Science (SJS)

Downloaded from http://sciencejournal.uofk.edu

[ Trends and variations in the activity of global vegetation in response to climate

variability between 1987 and 1997

Abstract

Eleven-year (1987-1997) time series data of remotely sensed vegetation index (NDVI) and meteorological
observations (temperature, precipitation, cloud cover and relative humidity) provided a powerful tool to
illuminate the response of global terrestrial vegetation to short-and long-term climate variability. NDVI being a
sensitive estimator of the amount of photosynthetic active radiation intercepted by the canopy has been treated
as a proxy for above ground net primary production (ANPP). Analyses of trends, multiple regression and
correlation analyses were employed. The main result indicates a considerable increase (0.7~1.9%/year) of
monthly vegetation production in all ecosystems over the investigated period, allied with an analogous increase
(0.9~15%/year) in precipitation. Additionally, several direct relationships were also observed on the intra- and
inter-annual time scales suggesting that the increase and variation of ANPP in most biomes could be mainly
linked to the corresponding increase and variation in precipitation. Overall, the four climate variables play a
considerable role in the inter-annual variability of ANPP of global vegetation.
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Abstract

Eleven-year (1987-1997) time series data of remotely sensed vegetation index (NDVI) and
meteorological observations (temperature, precipitation, cloud cover and relative humidity) provided a powerful
tool to illuminate the response of global terrestrial vegetation to short-and long-term climate variability. NDVI
being a sensitive estimator of the amount of photosynthetic active radiation intercepted by the canopy has been
treated as a proxy for above ground net primary production (ANPP). Analyses of trends, multiple regression and
correlation analyses were employed. The main result indicates a considerable increase (0.7~1.9%f/year) of
monthly vegetation production in all ecosystems over the investigated period, allied with an analogous increase
(0.9~15%/year) in precipitation. Additionally, several direct relationships were also observed on the intra- and
inter-annual time scales suggesting that the increase and variation of ANPP in most biomes could be mainly
linked to the corresponding increase and variation in precipitation. Overall, the four climate variables play a
considerable role in the inter-annual variability of ANPP of global vegetation.
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1. Introduction

Terrestrial vegetation plays a key role in the global
carbon storage and cycling by assimilating
atmospheric CO, -and nutrients- in the
photosynthetic process, converting carbon into
plant tissue and accumulating it in the soil pool as
litter fall. The anthropogenic emissions of CO,
from fuel burning, cement production and land use
change will be offset if terrestrial vegetation
production increases. However, if terrestrial carbon
is lost to the atmosphere the rate of accumulation of
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CO, in the atmosphere will increase and the
climate change problem will exaggerate. Data on
atmospheric carbon dioxide and oxygen suggested
that the terrestrial biosphere was largely neutral
with respect to net carbon exchange during the
1980s and has become a net carbon sink in 1990s
[1]. This increase in carbon sequestration by
terrestrial biosphere was attributed to nitrogen and
CO, fertilization [2], forest regrowth [3; 4] and
climate change in the northern mid and high-
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latitudes and mainly to CO, fertilization in the
tropics.

Terrestrial vegetation production is subject to
changes at different time scales in response to
variations in weather, radiation and nutrients in soil
as well as to human influences. Regional and
global patterns of net primary production (NPP)
and their relation to mean climatic factors (mainly
temperature and precipitation) have been described
since the mid of last century [5; 6; 7]. However,
recent endeavors [8; 9; 10] to identify significant
relationships between inter-annual deviations in
NPP and corresponding anomalies in their
established mean climatic predictors, obtained
conflicting results. Nevertheless, over the last two
decades earth system -including terrestrial
vegetation- experienced dramatic environmental
changes such as the increase of global air
temperature (1980s and 1990s), change in cloud
and precipitation patterns and the more frequent
and persistent EI Nifio events. Changes in the
global hydrologic cycle are also a possible
consequence of increasing concentrations of
atmospheric greenhouse gases [11]. Accordingly,
regional studies [12; 13; 14; 15; 16] have reported
several increases in the productivity of terrestrial
ecosystems. Nemani et al., [17] reported an
increase of global NPP between 1982 and 1999
resulting from climate changes which have eased
critical climatic constraints to plant growth in
several locations. They noted that global scale
comprehensive analysis of the impacts of climate
variability on vegetation production is still lacking.
Here we attempt to investigate the climate-
vegetation relationship of major terrestrial
ecosystems over a one-decade period (1987~1997).
Subsets of the Normalized Difference Vegetation
Index, NDVI, of the Advanced Very High
Resolution Radiometer, AVHRR, on board the
National Oceanic and Atmospheric
Administration’s, NOAA satellites and historical
meteorological data (temperature, precipitation,
cloud cover and relative humidity) were used. The
objectives are to (1) distinguish trends and
variations in NDVI and climatic variables over the
study period and to (2) investigate whether the
variation in vegetation production could be linked
to corresponding variations in climatic factors in
the intra- and inter-annual time scales. Noting that
plant growth is limited by a number of other factors
such as the amount of solar radiation, nutrients in
soil and permafrost, this contribution is primarily
concerned with the constraints imposed by main

climatic factors (e.g. temperature and precipitation).

2. Materials and methods
2.1. NDVI and climatic data

Recently, satellite—based vegetation indices became
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recognized for their ability to report vegetation
changes. They provide high spatial and temporal
resolution coverage which allows monitoring
dynamics of global and regional vegetation
condition. NDVI is computed as the ratio between
the difference between energy reflectance in the
near-infrared waveband and the visible waveband
and the sum of energy reflectance in both
wavebands (NDVI=NIR-VIS/NIR+VIS). This ratio
provides a sensitive estimator of the amount of
photosynthetic active radiation intercepted by the
canopy and hence of the above ground net primary
production (ANPP). Therefore the multi-temporal
NDVI data are useful in studying temporal
variation in phenology of natural vegetation due to
inter-seasonal, inter-annual and episodic climatic
variations.

Monthly NDVI measured by AVHRR on board
NOAA 9, NOAA 11 and NOOA 14 polar-orbiting
satellites and monthly mean temperature,
precipitation, cloud cover and relative humidity
derived from meteorological observations over land
which were quality checked and compiled by the
Office of Statistics in the Japan Meteorological
Agency in collaboration with the World
Meteorological Observation (WMO) were used.
NDVI is preferred for monitoring global land
vegetation because it partially compensates for
changing illumination conditions, surface slope and
viewing aspect. Here, a sub-set (1987-1997) of the
C-level monthly NDVI data of the third generation
version was used. This data has been obtained from
NOAA/NESDIS’s Office of Research and
Application (ORA), Climate Research and
Application Division (CRAD), Land Surface Team
with a spatial resolution (pixel size) of 0.144°
latitude by 0.144° longitude [18]. Three months
data in 1994 (October, November and December)
and one month in 1995 (January) were missing.
The three corresponding months of 1993 were used
for 1994 while the mean of February and March
was taken to represent the missing January of 1995.

Pixels of NDVI data (0.144° X 0.144% which
spatially overlap with meteorological stations on
land were extracted and the corresponding
meteorological measurements (temperature,
precipitation, cloud cover and relative humidity)
were taken to represent mean values of each cell.
Pixels with meteorological station(s) positioned at
or near the center were preferential. Generally,
within a single pixel, maximum of two stations
were located from which mean values of climatic
parameters were computed. A total of 736 pixels
were found to include meteorological stations with
complete data record of 11 years. Pixels of NDVI
data with their meteorological variables were then
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aggregated into global land cover classes based on
vegetation maps of Matthews [19] and Olson [20].
They were further regrouped into 8 broad
vegetation classes adapted from IPCC [21]. 64
pixels were located in tropical evergreen forests, 52
in tropical deciduous forests, 116 in temperate
forests, 53 in boreal forests, 131 in woodland, 166
in savanna, 51 in temperate grassland and 103 in
deserts and semi-deserts. No pixels including
meteorological stations with full data record were
found in tundra class while pixels located in deserts
and semi-deserts were grouped into one class.
Therefore, pixels in each class were taken to
represent sample measurements of the specific
vegetation biome.

2.2. Analysis of trends in time series data

Here, trends in NDVI and climatic
variables over the study period (1987~1997) were
investigated. First, five-month running mean was
applied on all data in order to smooth out any intra-
seasonal variations. Because time series data
usually contain seasonality that is usually much
stronger than any other signal we wish to study,
NDVI and meteorological variables were
deseasonalized using Ratio-to-Moving Average
method. For each vegetation biome, monthly NDVI,
temperature and precipitation were obtained by
averaging within biome data pixels. Linear trends
in NDVI, temperature, precipitation, cloud cover
and relative humidity were calculated by fitting
linear functions through the time series data in each
biome group. Monthly differences and change
percentages over the eleven-year period were then
computed for the statistically significant (P<0.05)
trends.

2.3. Multiple linear regressions of NDVI and
climatic variables

Multiple linear regression was used to examine the
role of the four climatic parameters (temperature,
precipitation, cloud cover and relative humidity)
over the variability of monthly NDVI. For all data
sets statistically significant trends were removed in
order to produce approximately stationary time
series. The dependent variable in the regression
was NDVI and the independent variables were
temperature, precipitation, cloud cover and relative
humidity. Serial autocorrelation potentially exists
between the independent variables (temperature,
precipitation, cloud cover and relative humidity)
therefore a “backward” selection process was
performed [22]. The resultant regression model
retains the combination of b; terms corresponding
to significant (P < 0.05) temperature, precipitation,
cloud cover or relative humidity. The standardized
coefficients § were obtained by the transformation
Bi= biS/S, (for i = 1,2,3,4) where S; denotes the
standard deviation of the ith independent variable
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X; and S, denotes the standard deviation of NDVI
values Y. Thus we present coefficients B that are
“commensurate measure of response” of NDVI to
climate variables [22; 23]. The regression analysis
was performed excluding monthly data between
June 1991 and February 1995 (NDVI possibly
affected by the eruption of Mt. Pinatubo or satellite
problems [24]. Therefore, 87 months in total were
used in the regression analysis. These analyses use
NDVI and climatic variables averaged over the
entire vegetation biome where spatial variability
has been smoothed out. We assumed that within
biome pixels which are also morphologically and
physiologically similar manifest similar responses
to climate variability despite their spatial
distribution.

2.4, Correlation analyses between annual means
and coefficients of variation

In the second experiment the climate-NDVI
relationship was examined over an inter-annual
time scale using 11-year means and coefficients of
variation (CV%) of NDVI and four climatic
variables calculated for every data pixel.
Correlations between means and coefficients of
variation of NDVI and those of temperature,
precipitation, cloud cover and relative humidity
were computed using pixels of each biome (i.e.,
pixels were treated as replicate observations of the
specific vegetation biome). We have adopted the
assumption of Fang et al. [9] stating that; if the
correlation between coefficient of variations of
NDVI and those of temperature, precipitation,
cloud cove or relative humidity were found
statistically significant, the inter-annual variation in
NDVI (the ANPP predictor) could be attributed to
the inter-annual variation in these climatic
parameters. The same approach was previously
used to indicate that precipitation is the main
determinant not only of ANPP of wheat in the
Pampas region of Argentina but also of its inter-
annual variability [25].

3. Results and discussion

3.1. Trends in NDVI and climatic variables over
one decade

The one-decade study period of 1987 to 1997
witnessed some important environmental events
such as; the strong La Nifia of 1988-1989, the
prolonged El Nifio of 1991-1995, the eruption of
Mt. Pinatubo (1991) and the developing historical
El Nifio of 1997. Over this period, monthly NDVI
has increased in all vegetation biomes
(0.7~1.9%/year) with the largest change
percentages found in deserts, boreal forests and
savanna vegetation and the least found in tropical
evergreen and temperate forests (Table 1).
Similarly, except in boreal forests, precipitation has
significantly increased over the eleven-year period
particularly in deserts where monthly precipitation
over doubled. Relative humidity on the other hand,
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has slightly decreased in all vegetation biomes.
Cloud cover decreased in boreal forests, woodland
and temperate grasslands but slightly increased in
tropical evergreen forests and savanna. Therefore,
it is more likely that increase of precipitation has
contributed to the increase of ANPP in most
biomes especially tropical and water-limited
biomes (deserts, grasslands and woodlands). In arid
ecosystems, changes in regional precipitation
patterns associated with ElI Nifio were found to
increase plant cover several folds by massive
germination of annuals and increase of seed bank
in the soil. Notably, wet ENSO events might also
cause long-lasting effects on arid and semi-arid
environments by encouraging recruitment of trees
and shrubs [26]. The considerable increase of
monthly NDVI in boreal forests (18.8% over 11

Mohamed et al., 2014

years) may be attributed to growth stimulation from
other mechanisms such as; lengthening of active
growing season [12], nitrogen deposition and forest
regrowth [17]. Increase of NDVI in the different
biomes may not indicate similar increase in their
net primary production relative to each other due to
the intrinsic differences in their greenness
(measured by NDVI) and production potential.
Thus although deserts show large relative pulse in
NDVI the absolute ANPP response is biotically
constrained because of low plant density and leaf
area [10]. Similarly, a relatively small increase of
NDVI in the tropical region implies large increase
of net primary production (high production
potential) and consequently a sizable contribution
to the overall increase of global NPP.

Table 1: Trends and change percents (over 11-year period) of NDVI and four climatic variables across eight
vegetation biomes. Negative values indicate decreasing trends. Only significant trends are shown. Probability
values less than 0.05 are indicated with a single asterisk and those less than 0.01 with double asterisk. TEG
stands for tropical evergreen forests, TDC for tropical deciduous forests, TMF for temperate forests, BOR for
Boreal forests, WOO for woodlands, SAV for Savannah, TMG for temperate grasslands and DES for deserts.

NDVI Temperature Precipitation Cloud cover Relative humidity

Biome Trend Change Trend Change Trend Change Trend Change Trend Change

(%) (%) (%) (%) (%)

/month /month /month /month /month

TEG 2x10% 7.8 0.1717 19.8 | 0.0016™ 3.1 -0.015" 25
TDC 3x10%" 15.1 0.002™ 1.1 0.117 29.0 -0.0117 2.0
TMF 2x10%" 10.3 0.049™ 9.14 -0.022™ 3.9
BOR 3x10%" 18.8 -0.0006" 1.2 -0.0137 2.3
WOO | 2x10%" 11.7 0.1197 27.2 -0.002™ 4.3 -0.014™ 2.7
SAV 3x10%" 16.6 0.0014" 0.75 0.072" 20.0 0.0009” | 2.45 -0.006" 1.2
TMG | 2x10%" 13.6 0.004" 6.63 0.086 36.1 -0.0021" 6.1 -0.034" 7.1
DES 2x107%" 21.1 0.122" 131.1 -0.012™ 3.2

3.2. Climatic controls over the variability of
monthly NDVI

Table 2 shows that monthly variations of NDVI are
closely related to climate variability-particularly
temperature and precipitation- in the various
vegetation biomes. The four climatic variables
were relatively good predictors of monthly ANPP
in temperate forests and deserts, moderate
predictors in temperate grassland, savanna and
woodlands but were weak predictors in tropical
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forests. In boreal forests there was no sufficient
evidence to indicate that either of the four climatic
factors has control over the monthly variations in
vegetation growth. Several mechanisms may be
responsible. Although vegetation in cold regions is
limited by temperature [27] the response is
complicated by effects from previous growth
periods [28]. Precipitation, on the other hand plays
little role in modulating the vegetation growth in
regions where precipitation usually exceeds the
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minimum threshold above which vegetation is
unresponsive [27]. Nevertheless, northern and

temperate ecosystems are known to be highly
limited by the availability of nitrogen in soil.

Table 2: Summary of results of multiple regression analyses between dependent variable NDVI and independent
variables; temperature, precipitation, cloud cover and relative humidity. The indicated regression models are
significant at p < 0.001. Biome codes are explained in the caption of Table 1.

Standardized coefficient and significance level of independent variables
Regression Temperature Precipitation Cloud cover Relative humidity
) coefficient
Biome | (Rr? B p B p B P p P
code
TEG 0.20 0.61 0.000 -0.43 0.002
TDC 0.22 -0.22 | 0.027 0.53 | 0.000 0.24 0.039
TMF 0.50 0.46 | 0.000 -0.35 | 0.000 0.46 0.000
BOR
WOO 0.29 0.26 | 0.010 0.60 0.000
SAV 0.30 -0.39 | 0.000 0.70 0.000 -0.33 0.043
TMG 0.32 0.24 | 0.023 0.67 0.000
DES 0.41 -0.20 | 0.042 0.66 | 0.000 0.40 | 0.000

The highly significant correlations between NDVI
and precipitation coincide with the assumption
introduced in the previous section that the increase
of ANPP over the study period (1987~1997) is
more likely attributed to the concurrent increase in
precipitation. Monthly NDVI in arid ecosystems
(deserts and savanna) are also controlled by
temperature and cloud cover. This might indicate
that plant growth in these biomes is regulated not
only by direct increase of rainfall but also by the
increase of water use efficiency through reduction
of water loss by evapotranspiration (decrease of air
temperature and increase of cloud cover). In
tropical evergreen forests the increase of monthly
NDVI is related to the increases in cloud cover
which does not conflict with the fact that tropical
vegetation is radiation-limited [17], instead may
rather indicate a two-way feedback between
vegetation and climate. Berbigier et al. [29], found
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that at daily scale, diffuse APAR (absorbed fraction
of PAR) is only weakly linked to total APAR while
the relationship is much tighter at the monthly scale
meaning that at the daily scale there is a clear
difference between sunny and cloudy days but
when averaged over a month this difference is
smoothed so that the diffuse APAR depends more
on the seasonal trend than on differences in cloud
cover.

3.3. Patterns of inter-annual variation of NDVI
and climate variables

While the previous section reveals several
relationships between monthly deviations of ANPP
and climatic variables across different biome
groups, the following sections examine the pattern
of inter-annual variations in NDVI - the predictor
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of ANPP — and whether these variations can also be
related to corresponding deviations in these factors.
In Table 3, the mean annual NDVI is directly

related to annual temperature in boreal forests,
temperate forests and grasslands but is inversely
related to annual temperature in savanna. The
former three relationships indicate that annual
vegetation growth in boreal and temperate
ecosystems is limited by temperature [27]. In many
northern and temperate ecosystems increase of
temperature during summer may increase ANPP
metabolically by enhancing photosynthesis or

increasing  nutrient  availability

(particularly

Mohamed et al., 2014

inorganic nitrogen) through higher rates of soil
decomposition [12; 30]. The same results were also
identified by Braswell et al. [22], Law et al. [31]
and Mohamed et al. [32]. On the other hand, high
annual temperatures imply lower vegetation growth
in the water-limited savanna may be due to
increase of water stress [22]. The positive
correlations between mean annual NDVI and
precipitation, cloud cover and relative humidity in
most biomes indicate the control of water
availability over plant growth which concurs with
the acknowledged hypothesis that water stress is
the most common limitation to vegetation [33; 34].

Table 3: Correlations between mean NDVI and mean climatic variables across eight biome groups. Only
significant (P=0.05) coefficients are shown. Numbers between brackets indicate number of observations. Biome

codes are explained in the caption of Table 1.

Biome code Climatic parameter
Temperature Precipitation Cloud cover Relative humidity

TEG (64) - - -- 0.33
TDC (52) - 0.44 - 0.37
TMF (116) 0.22 0.32 0.30 0.57
BOR (53) 0.51 0.50 0.49 0.63
WOO (131) - 0.60 0.42 0.71
SAV (166) -0.56 0.50 0.25 0.75
TMG (51) 0.52 0.83 0.41 0.61
DES (103) -- 0.72 0.54 0.57

Over an inter-annual time scale, NDVI was most
variable in deserts (mean CV%=15.5), followed by
savanna (12.4) and grasslands (11.6) and was least
variable in forests (Fig. 1). These results agree with
those of Knapp and Smith (10) and Fang et al (9).
Temperature was typically most variable in boreal
forests (mean CV%=78.4) followed by temperate
forests (17.3) while least variable in tropical forests
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and savanna (mean CV%=3.7). Regions with high
annual mean temperature usually show less
variation in this factor. Precipitation was highly
variable in all biomes with the largest variation
occurred in desert biome (mean CV%=108.8),
followed by savanna (78.4) and tropical deciduous
forests (67.6) while temperate forests were the least
37).
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Fig.1: Relationship between mean NDVI CV versus mean CV of temperature, precipitation, cloud cover and
relative humidity of all eight biome groups. Biome codes are explained in the caption of Table 1.

3.4. Influences of climate variables over inter-
annual variation of NDVI

Table 4 reveals the relationships between
coefficient of variation of NDVI and that of four
climate variables, for the different biome groups.
Three significant weak relationships (p=0.05)
between CV of NDVI and CV of precipitation were
observed; in tropical evergreen forests, in boreal
forests and in temperate grasslands. In Table 3,
annual mean NDVI was not related to precipitation
in tropical evergreen forests which implies that
although the annual mean precipitation does not
limit the vegetation growth inter-annual variations
in precipitation might be partially responsible for
the inter-annual variation in ANPP. In a previous
work [32], we have observed significant
relationship between CV of NPP and that of
precipitation in the entire tropical zone. Fang et al.
[9] also observed highly significant correlations
between inter-annual variations in NDVI and
precipitation in six vegetation ecosystems across
China including forest, grassland, desert, alpine
vegetation and cropland. However, other attempts
did not find significant relation between the inter-
annual variability of NDVI and equivalent
anomalies in annual precipitation over a wide range
of vegetation types in North America [8] and in
Africa ([8; 35]. Generally, the differences between
results lie on the inherent tradeoffs between data
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quality and spatial extent [36] since the localized
nature of precipitation anomalies complicates their
effect at global scale [22]. The inter-annual
variation of NDVI in savanna was also correlated
to inter-annual variation of relative humidity. A
similar relationship was observed in the intra-
annual time scale (Table 2).

Generally, Fig. 1 shows significant correlations
between mean NDVI CV and mean precipitation
CV (r=0.92, p=0.001), mean cloud cover CV
(r=0.82, p=0.001) and mean relative humidity CV
(r=0.88, p=0.001) for all eight biome groups while
displays insignificant relation with mean
temperature CV (r=-0.57). The former result agrees
well with the result of Fang et al. [9] who have
identified a similar relationship a cross six different
biome groups in China. Nevertheless, the
statistically significant correlations between mean
NDVI and mean temperature, precipitation, cloud
cover or relative humidity indicate that although
these climatic variables may not contribute to the
inter-annual variation of ANPP in many
ecosystems they remain as essential predictors of
mean ANPP.

Atmospheric CO, inversion models [21] have
shown that recently northern mid-latitude
vegetations have been consistently large carbon
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sinks while the tropics are either neutral or small
sources. Differently, our result indicates a
considerable  increase  (0.7~1.9%/year)  of
vegetation production in all ecosystems over the
investigated eleven-year period (1987~1997) allied
with an analogous increase (0.9~15%l/year) in

Mohamed et al., 2014

precipitation (except in boreal forests). Monthly
variations of NDVI on the other hand were closely
related to  climate  variability-particularly
temperature and precipitation- in the various
vegetation ecosystems.

Table 4. Correlations between CV of NDVI and CV of four climatic variables across eight biome groups. Only
significant (P= 0.05) coefficients are shown. Numbers between brackets indicate number of observations.
Biome codes are explained in the caption of Table 1.

Biome code

Climatic parameter

Temperature

Precipitation

Cloud cover

Relative humidity

0.27

TEG (64) -

TDC (52) -

TMF (116) -

BOR (53) - 03

WOO (131) 0.17

-- 0.32

SAV (166) 0.17

0.17 0.63

TMG (51) - 0.52

DES (103) -

In this contribution, NDVI which represents a
sensitive measure of photosynthetically active
radiation intercepted by plant canopy was used as
proxy of (ANPP). This approach has been
criticized by Knapp and Smith [40]. They argued
that although NDVI can be related to chlorophyll
content, leaf area, and standing crop biomass in
most biomes [41] and also NPP in some instances,
NDVI-based relationships are typically calibrated
with standing crop biomass data, not NPP. Because
standing crop biomass and NPP are positively
related across broad spatial scales, it is common in
the remote sensing literature for these very
different ecosystem attributes to be treated as
synonymous. Unfortunately NDVI-NPP
relationships are not robust under many conditions.
In grazed grasslands for example where standing
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crop is low but NPP is high NDVI can only
accurately estimate standing crop [42]. Worldwide
it is likely that a majority of the grasslands
remotely sensed are grazed. In addition to that
background soil reflection in arid regions further
complicates NDVI-relationships in deserts [39].
Relationships observed in such biomes should
therefore be treated with caution.
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