

Performance of Sudan Desert Sheep Fed Different Nitrogen Levels in Molasses-based Fattening Rations

Asim A. A. Lutfi and Soad A. Fadl

Department of Animal Production, Desertification Research Institute, National Centre for Research, P.O. Box 2404 Khartoum, Sudan

Abstract: Twenty-four yearling uncastrated males of Sudan desert sheep (Hamari ecotype), ranging in weight between 26 and 30 kg, were used in a completely randomized design with the objective of studying the effect of feeding different nitrogen levels (14.5%, 16.7% and 18.7% crude protein) in complete isocaloric molasses-based fattening diets on sheep performance, some rumen metabolites (ammonia nitrogen) and blood urea nitrogen. There was no significant treatment effect on average final weight, average daily gain, daily dry matter intake, daily water intake or feed conversion ratio. There was a tendency of increased growth rate and dry matter intake with the increase of nitrogen level. The best feed conversion ratio was found at 14.5% crude protein, whereas 16.7% crude protein exhibited the least. There was a significant ($P<0.05$) treatment effect on rumen pH when samples were taken before feeding. Treatment had no significant effect on ammonia nitrogen or blood urea nitrogen when samples were taken before and six hours after feeding. However, treatment failed also to induce a significant ($P<0.05$) effect on ammonia nitrogen three hours after feeding.

Key words: Sheep; nitrogen level; performance

INTRODUCTION

Decreasing of grazing land and inadequate feed supply are the major problems facing livestock producers in Sudan. Most of the crop residues are used as livestock feed, but their supply is seasonal and they are used in a traditional way without any pretreatment and/or strategic supplementation.

Protein is one of the most limiting nutrients in sheep fattening rations formulated from agricultural (e.g., groundnut hulls) and agro-industrial by-products (e.g., molasses). To achieve rapid gains, rations need to be supplemented with dietary protein, since high protein levels seemed to promote growth. Haddad *et al.* (2001) obtained the highest average daily gain (ADG) with 16% and 18% crude protein (CP) diets when Awassi lambs were fed high concentrate isocaloric diets that contained 10%, 12%, 14%, 16% and 18% CP in a totally mixed diet. Fluharty and McClure (1997) recorded a 19% improvement in ADG for fattening lambs fed 18% CP diet compared with a 14.5% CP diet. Thomson *et al.* (1995) reported that increasing dietary CP from 10% to 13% CP increased dry matter intake (DMI), ADG and feed conversion ratio (FCR) in cattle fed high-concentrate diets. In a subsequent study, Gleghorn *et al.* (2004) indicated that increasing CP concentration from 11.5% to 13% slightly increased ADG. Increasing CP concentration to 14.5% did not improve performance or carcass characteristics. Willms *et al.* (1991) provided further evidence that fattening diets based on alkaline hydrogen peroxide-treated wheat straw supplemented with soybean meal to contain 12% or 14% CP had similar DMI, ADG and efficiency of gain when fed to ram lambs. The reasons for such responses are not clear but are of paramount importance from a production standpoint. The level of protein also affects ammonia nitrogen (NH₃-N) and blood urea nitrogen (BUN). Increasing the CP content of diets results in increased concentrations of ruminal NH₃-N and BUN and, consequently, greater nitrogen (N) losses (Bunting *et al.* 1987; Castillo *et al.* 2001). Previous research suggests that BUN greater than 8 mg/100 ml are indicative of excessive N intake and N wastage (Cole *et al.* 2003).

The objective of this study was to determine growth responses of yearling Sudan desert sheep to molasses-based fattening rations supplemented with natural protein (groundnut seed cake) and non-protein N (urea) to levels of 14.5%, 16.7% and 18.7% CP on dry matter (DM) basis.

MATERIALS AND METHODS

Feeding trial

Twenty-four yearling uncastrated males of Sudan desert sheep (Hamari ecotype) ranging in weight between 26 and 30 kg were used in this study. The animals were purchased from the local market. On arrival at the experimental farm, they were treated with Levafas against endoparasites and sprayed with Gamatox for the control of ectoparasites and given a prophylactic dose of Alamycine. The animals were left to acclimatize for 14 days, during this period the animals were divided according to their live weight into three groups of eight animals each and allotted at random to each of the experimental rations under investigation. The rations contained different CP levels (14.5%, 16.7% and 18.7% CP for treatments T_1 , T_2 and T_3 , respectively) through increasing percentages of urea (1.7%, 2.5% and 3%) and were offered *ad libitum* in the fattening trial for 70 days. The rations were calculated to be isocaloric. The detailed composition of the rations is presented in Table 1. Feed intake and body weight were recorded bi-weekly. Daily records were made for water intake and evaporation rate.

The sheep's pens were in the open and shaded. Each pen was provided with a 90 litres half barrel set approximately 12.5 cm in the ground to prevent its being upset. The half barrels were calibrated by weighing exactly 90 kilogrammes of water into each. The height of water was measured and the kilogrammes of water per centimetre depth were calculated and each barrel was then marked. Control half barrels to measure evaporation rate were set and calibrated in a similar manner. Water consumed by each group of sheep during each day was determined by measuring the depletion of water in the barrels and by correcting for evaporation. Measurements were made every day at the same time during the period of the trial. The animals in each group were fed and watered in group.

Table 1. Percentage of ingredients and chemical composition of the experimental rations

	T ₁	T ₂	T ₃
Ingredients^{*1}			
Molasses	40.00	40.00	40.00
Wheat bran	29.30	28.50	28.00
Groundnut hulls	20.00	20.00	20.00
Groundnut seed cake	8.00	8.00	8.00
Urea	1.70	2.50	3.00
Salt	0.95	0.95	0.95
Vit./mineral supplement ^{*2}	0.05	0.05	0.05
Total	100	100	100
Dry matter analysis (%)			
Ash	8.34	10.55	9.47
Organic matter	91.66	89.45	90.53
Ether extract	2.10	1.95	4.10
Crude fibre	10.50	10.75	10.65
Crude protein	14.53	16.71	18.73
Nitrogen free extract	64.53	60.04	57.06
ME (MJ/kg DM) ^{*3}	11.95	11.56	12.04

T₁:14.5% CP; T₂: 16.7% CP; T₃: 18.7% CP^{*1} on as fed basis (%)^{*2} Avico Products, Jordan

Each 1 g of vitamin supplement contains:

Vitamin A 8000 IU	Vitamin B ₁₂	5 mcg	Iron	22 mg
Vitamin D ₃ 1400 IU	Ca-d pantothenate	5 mg	Manganese	33 mg
Vitamin E 2 mg	Zinc	25 mg	Copper	2.2 mg
Vitamin K ₃ 2 mg	Nicotinamide (B ₃)	15 mg	Cobalt	0.5 mg
Vitamin B ₂ 4 mg	Choline Chloride	100 mg	Iodine	1.1 mg
Vitamin B ₁ 2 mg	Folic Acid	0.5 mg		

^{*3} Calculated after MAFF (1975), using the following equation:

$$\text{ME (MJ/kg DM)} = 0.012\text{CP} + 0.03\text{I EE} + 0.005\text{ CF} + 0.014\text{NFE}$$

At the end of the feeding trial, the sheep were fasted for 24 hours, then they were offered their normal rations *ad libitum*. Samples of rumen liquor were obtained by means of stomach tube immediately before feeding and 3 hrs and 6 hrs after feeding. The rumen pH was measured immediately, using Electronic pH meter (Model 41600). The rumen liquor samples were then strained through 4 layers cheesecloth after they were centrifuged at 3000 rpm for 5 minutes and kept for immediate analysis. Ruminal NH₃-N was determined as described by Conway (1957). Blood samples were withdrawn from jugular vein immediately before feeding and 3 hrs and 6 hrs post-feeding. The blood samples were allowed to clot, and the serum was separated by centrifugation and stored at - 20°C until assayed for blood urea (Conway 1957). The samples of feed offered were taken weekly and bulked at the end of the feeding trial. The collection composites were divided into portions: one dried at 60°C and the other at 105°C for chemical analysis and DM determinations, respectively. Feed samples were then ground through a 1-mm mesh screen for analysis. The samples of rations were analysed for their proximate chemical components as described by AOAC (1980).

Statistical analysis

Data from the feeding trial were arranged in a completely randomized design and subjected to analysis of variance, according to the general linear models procedure of SAS (1990). Duncan multiple range test was used for mean separation at P=0.05.

RESULTS AND DISCUSSION

Effect of N level on animal performance

Growth, DMI, water intake (WI) and FCR, as affected by N level in the concentrate, are presented in Table 2. There was no significant treatment effect on average final weight, ADG, daily DMI, WI or FCR.

No significant treatment effect was found for ADGs. They were 0.15, 0.15 and 0.16 kg for 14.5%, 16.7% and 18.7% protein diets, respectively. These results agree with those reported by Harb (1994) who fed Awassi

lambs six high concentrate diets containing a range of 14.7%-19.9% dietary CP and obtained no significant difference for ADG. The tendency of ADG to be greater for the sheep, fed an increased amount of dietary protein, agrees with the results obtained by De Gracia and Ward (1991) when dietary CP was increased in iso-caloric diets fed to mature beef cows. Gleghorn *et al.* (2004) demonstrated also that increasing the concentration of supplementary urea linearly increased ADG. The additional protein, fed in our study, may have met an amino acid deficiency *per se* (Whitelaw *et al.* 1985) or may have improved the efficiency of metabolizable energy (ME) utilization. Veitia *et al.* (1980) reported that increase in protein level produces an increase in ME consumption, feeding level, corrected ME consumption and energy availability for fattening. In the present study, DMI increased with increasing the protein concentration of the isocaloric diets fed to sheep. The increase in DMI resulted in an increase in energy intake. This may explain the higher ADG in T₃ than in the other two treatments.

Table 2. Growth, dry matter intake, water intake and feed conversion ratio in sheep fed different nitrogen levels

Item	T ₁	T ₂	T ₃
Experimental period (days)	70	70	70
Number of animals	8	8	8
Initial wt (kg)	28.50±1.18 ^a	28.41±1.36 ^a	27.72±1.25 ^a
Final wt (kg)	38.75±1.87 ^a	38.84±4.75 ^a	38.94±6.80 ^a
Total gain (kg/70 days)	10.25±1.84 ^a	10.43±4.07 ^a	11.22±3.99 ^a
Average daily gain (kg)	0.15±0.03 ^a	0.15±0.06 ^a	0.16±0.06 ^a
Daily DMI (kg)	1.26±0.25 ^a	1.44±0.11 ^a	1.47±0.06 ^a
Feed conversion ratio	8.40±2.28 ^a	9.60±3.51 ^a	9.19±6.17 ^a
Kg TDN [*] /kg gain	5.00±0.27 ^a	5.47±0.12 ^a	5.94±0.44 ^a
Water intake (kg/day)	4.06±0.09 ^a	4.57±1.19 ^a	4.38±1.14 ^a
Kg water intake/kg DMI	3.22±1.05 ^a	3.17±0.70 ^a	2.98±0.59 ^a

T₁:14.5% CP; T₂: 16.7% CP; T₃: 18.7% CP

Means with similar superscript in a row are not significantly different at P>0.05.

* Data not shown

The daily DMI was 1.26, 1.44 and 1.47 kg for T₁, T₂ and T₃, respectively. The insignificant increase in DMI with the increase of CP levels agrees with the results obtained by Pathak and Sharma (1991) who fed isocaloric rations containing 8.81%, 11.32% and 13.58% CP to adult goats. They found that the mean DMI/100 kg body weight and per kilogramme metabolic body size (W^{0.75}) were a little higher in group 1 (8.81% CP) than in the other two groups, but the differences between the groups were not significant. Archibeque *et al.* (2007) reported also non significant difference in DMI by steers fed low (9%), medium (11.8%) or high (13.9%) CP diets. The trend of increase in their study, however, was inconsistent. Haddad *et al.* (2001) reported, however, a significant increase in DMI with increasing levels of dietary CP. Inclusion of urea in the ration might have increased the rate of passage and digestion in the rumen, which stimulated the animals to consume more DM (Sharma and Mudgal 1975).

Sheep fed 14.5% CP (8.4 kg feed/kg gain) were more efficient in feed conversion than those fed 16.7% (9.6 kg feed/kg gain) or 18.7% (9.19 kg feed/kg gain). No significant treatment effect was found in FCR. Haddad *et al.* (2001) found no significant difference in FCR between diets containing 14%, 16% or 18% CP. They reported that Awassi lambs fed diets containing 14% CP gained less weight than those fed the 16% and 18% CP diets. Our results are in line with those obtained by Stiles *et al.* (1974) who found no effect on ADGs, feed intake or feed efficiency in Holstien bull-calves fed high concentrate rations containing 12%, 15% or 18% CP (as fed basis). Harb (1994) fed Awassi lambs six high concentrate diets that contained a range of 14.7%-19.9% dietary CP and obtained no significant difference in ADG and FCR.

Effect of N level on some rumen metabolites and BUN

In treatments T₁ and T₂, ruminal pH was neither significantly affected by N level nor by sampling time (Table 3). However, a significant (P<0.05) difference was found in T₃ when 6 hrs after feeding value was compared with the fasting or 3 hrs after feeding values. Before feeding, ruminal pH showed a significant (P<0.05) difference between T₃ and the other two treatments. These results are in line with those obtained by Willms *et al.*

(1991) who reported treatment effect on rumen pH. Contrary evidence was presented, however, by Nolte *et al.* (2000) who reported no effect of protein level on ruminal pH values. No significant effect of treatment was detected when rumen pH was measured 6 hrs after feeding.

Ruminal-NH₃ concentrations (Table 3) were neither significantly affected by sampling time nor by diet. These results agree with those obtained by Ahmed (1989). Contrary findings were presented by several research workers (e.g., Bunting *et al.* 1987; Willms *et al.* 1991; Castillo *et al.* 2001) who reported increased NH₃-N concentration with increasing CP level.

The peak NH₃-N concentration was obtained 3 hrs after feeding, and this was higher than 6 hrs after feeding values. The highest NH₃-N concentration was observed with T₁ (14.5% CP). Within each treatment, ruminal NH₃-N was higher 6 hrs after feeding than the fasting value except in T₃ where the two values were similar.

Table 3. Effect of nitrogen level on ruminal metabolites and blood urea nitrogen

Parameter	Sampling Time (hr)	T ₁	T ₂	T ₃
pH	-24	7.42±0.03 ^a	7.36±0.07 ^a	7.10±0.15 ^b
	3	6.23±0.25 ^a	6.58±0.09 ^{ab}	6.31±0.14 ^b
	6	6.71±0.26 ^a	6.95±0.12 ^a	6.81±0.17 ^a
NH ₃ -N (mg/100ml ruminal fluid)	-24	17.68±2.28 ^a	14.53±2.82 ^a	15.58±6.67 ^a
	3	22.23±3.45 ^a	20.65±1.67 ^a	19.75±4.68 ^a
	6	18.43±4.62 ^a	15.58±3.35 ^a	15.58±4.40 ^a
BUN (mg/100ml blood)	-24	26.69±5.23 ^a	26.23±6.23 ^a	30.63±7.76 ^a
	3	44.63±5.98 ^a	46.81±4.60 ^{ab}	39.38±3.35 ^b
	6	26.25±3.78 ^a	32.38±6.47 ^a	32.81±5.78 ^a

T₁:14.5% CP; T₂: 16.7% CP; T₃: 18.7% CP

Values are means ± SD of 4 animals.

Values in the same column or row with common superscripts are not significantly different at P>0.05.

Protein level in sheep diets

Although NH₃-N levels varied among diets, NH₃-N concentrations were in the optimal range for all diets. The NH₃-N concentration was higher than the optimal ruminal NH₃-N concentration of 5 mg/100 ml reported by Satter and Slyter (1974) as being necessary for maximal protein synthesis. Owens and Bergen (1983) indicated that concentrations ranging between 0.35 and 29 mg/100 ml promote maximal microbial growth. The highest level of NH₃-N production was obtained with the diet containing the lowest N level (14.5% CP) which probably reflects inadequate energy supply to promote microbial protein synthesis (MPS) in this diet. The concentration of NH₃-N in the rumen is a function of both rate of ruminal N degradation and concentration of ruminally degradable protein above microbial needs and the amount of dietary energy available to the rumen microorganisms. If the diet provides the rumen with sufficient amount of degradable protein/ NH₃-N, energy intake is the primary factor explaining the variability in MPS (Oldick *et al.* 1999).

BUN was also affected by treatment and time after feeding (Table 3). Generally, there was a tendency of increased BUN with the increase of N concentration in the diet (except for samples taken 3 hrs after feeding in T₃ which were lower than BUN values in T₂ and T₁). These results are in line with those reported by Pathak and Sharma (1991), Rusche *et al.* (1993) and Castillo *et al.* (2001). They found significant increase in BUN with the increase of N level in the diet. The increased BUN concentrations with increased dietary protein probably can be explained largely by increased absorption of ruminal NH₃ resulting in greater quantities of NH₃ being detoxified in the liver from urea (Rusche *et al.* 1993). Increasing dietary CP concentration to 18.7% increased BUN, thus, providing evidence that this concentration exceeded the requirements of sheep in this experiment. Cole *et al.* (2003) stated that high BUN gives an indication to the excessive N intake and N wastage.

BUN was affected by sampling time in T₃ only, as 3 hrs after feeding values were significantly different from both fasting and 6 hrs after feeding values. Three hours after feeding, BUN increased in all treatments. At 6 hrs after feeding, BUN decreased ($P>0.05$) in all treatments. Maximum increase in BUN 3 hrs after feeding was attained

in T₂ (46.81 mg/100 ml blood), followed by T₁ (44.63 mg/100 ml blood) and the least increase by T₃ (39.38 mg/100 ml blood). The only treatment effect (P<0.05) was detected when samples taken 3 hrs after feeding in T₃ were compared with T₁ (no significant difference was found between T₂ and the other two treatments). The faster turnover of urea in animals on high protein rations may be a result of greater loss of urea in urine through a greater water intake. This would also reduce plasma urea concentration and, therefore, urea degradation in the digestive tract (Sharma *et al.* 1974). Contrary finding was reported by Castillo *et al.* (2001) who observed increased BUN with the increase of CP content of dairy cows diets.

In conclusion, ADG by Sudan desert sheep fed molasses-based fattening diets respond to increased CP concentration, with maximal responses in ADG with 18.7% CP diet. This implies that high protein levels are beneficial, but high feeding cost and low animal performance must be taken into consideration. More work based on diets with different levels of protein (lower than those used in this study) is required to determine the best protein level to support high growth rates and better carcass traits in Sudan desert sheep.

REFERENCES

Ahmed, M.M.M. (1989). *The Effect of Dietary Protein Level, Watering Regime and Climatic Factors on Food Utilization and Blood Composition in Desert Sheep*. Ph.D. thesis. University of Khartoum, Sudan.

AOAC (1980). *Official Methods of Analysis*, 13th edition. Association of Official Analytical Chemists (AOAC), Washington, D. C., U.S.A.

Archibeque, S.L.; Freetly, H.C.; Cole, N.A. and Ferrell, C.L. (2007). The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions. *Journal of Animal Science* 85, 1496-1503.

Protein level in sheep diets

Bunting, L.D.; Boling, J.A.; Mackown, C.T. and Muntifering, R.B. (1987). Effect of dietary protein level on nitrogen metabolism in lambs: Studies using ^{15}N -nitrogen. *Journal of Animal Science* 64, 855-867.

Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C. and France, J. (2001). The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. *Journal of Animal Science* 79, 247-253.

Cole, N.A.; Greene, L.W.; McCollum, F.T.; Montgomery, T. and McBride, K. (2003). Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers. *Journal of Animal Science* 81, 2660-2668.

Conway, E.J. (1957). *Microdiffusion Analysis and Volumetric Error*, 4th edition. Crosby-Lockwood and Son Ltd., London.

De Gracia, M. and Ward, J.K. (1991). Escape protein for beef cows. II. Source and level in ammoniated wheat straw-corn silage diets. *Journal of Animal Science* 69, 2289-2293.

Fluharty, F.L. and McClure, K.E. (1997). Effect of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. *Journal of Animal Science* 75, 604-610.

Gleghorn, J.F.; Elam, N.A.; Galyean, M.L.; Duff, G. C.; Cole, N.A. and Rivera, J.D. (2004). Effects of crude protein concentration and degradability on performance, carcass characteristics, and serum urea nitrogen concentrations. *Journal of Animal Science* 82, 2705-2717.

Haddad, S.G.; Nasr, R.E. and Muwalla, M.M. (2001). Optimum dietary crude protein level for finishing Awassi lambs. *Small Ruminant Research* 39, 41-46.

Harb, M. (1994). The use of cereal grains in intensively fattening Awassi lambs to high live weights. *Dirassat* 21, 67-76.

MAFF (1975). Energy allowances and feeding systems for ruminants, Ministry of Agriculture, Fisheries and Food (MAFF), Technical Bulletin No. 33, HMSO, London.

Nolte, J. van E.; Ferreira, A.V. and Koester, H.H. (2000). Effect of different levels of supplemental N from urea on intake and utilization of wheat straw by Dohne Merino wethers. *South African Journal of Animal Science* 30 (Supplement 1), 143-144.

Oldick, B.S.; Firkins, J.L. and St-Pierre, N.R. (1999). Estimation of microbial nitrogen flow to the duodenum of cattle based on dry matter intake and diet composition. *Journal of Dairy Science* 82, 1497-1511.

Owens, F.N. and Bergen, W.G. (1983). Nitrogen metabolism of ruminant animals: Historical perspective, current understanding and future implications. *Journal of Animal Science* 57 (Supplement 2), 498-518.

Pathak, N.N. and Sharma, M.C. (1991). Effect of dietary protein levels on feed intake, digestibility of nutrients and nitrogen metabolism in goats. *Indian Journal of Animal Science* 61, 332-333.

Rusche, W.C.; Cochran, R.C.; Corah, L.R., Stevenson, J.S.; Harmon, D.L.; Brandt, R. T. Jr. and Minton, J.E. (1993). Influence of source and amount of dietary protein on performance, blood metabolites and reproductive function of primiparous beef cows. *Journal of Animal Science* 71, 557-563.

SAS (1990). *SAS/STAT User's Guide*, Release 6, 3rd edition. Statistical Analysis Systems Institute Inc. (SAS), Cary, North Carolina, U.S.A.

Protein level in sheep diets

Satter, L.D. and Slyter, L.L. (1974). Effect of ammonia concentration on ruminal microbial protein production in vitro. *British Journal of Nutrition* 32, 199-208.

Sharma, D.D. and Mudgal, V.D. (1975). Effect of various levels of urea on feed utilization in dry cattle and buffaloes. *Indian Journal of Animal Science* 45, 332-338.

Sharma, P.K.; Singh, U.B. and Ranjhan, S.K. (1974). Urea metabolism in zebu calves fed on diets of different crude-protein content. *Indian Journal of Animal Science* 44, 84-88.

Stiles, R.P.; Grieve, D.G. and Gills, W.A. (1974). Effects of three protein levels with and without added fat on the performance and carcass characteristics of heavy veal calves. *Canadian Journal of Animal Science* 54, 79-86.

Thomson, D.U.; Preston, R.L. and Bartle, S.J. (1995). Influence of protein source and level on the performance, plasma urea nitrogen and carcass characteristics of finishing beef steers. *Journal of Animal Science* 73 (Supplement 1), 257 (Abstract).

Veitia, J.L.; Elias, A.; Garcia, J. and Venereo, A. (1980). Effect of dietetic protein level for fattening of bulls with high molasses levels: Efficiency of energy utilization. *Indian Journal of Animal Science* 50, 810-815.

Whitelaw, F.G.; Milne, J.S.; Ørskov, E. R. and Smith, J.S. (1985). The effects of casein supplement given by abomasal infusion on the nitrogen and energy metabolism of lactating cows. *Proceedings of the Nutrition Society* 44, 44 (Abstract).

Willms, C.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr. and Fernando, R.L. (1991). Effects of increasing crude protein level on nitrogen retention and intestinal supply of amino acids in lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw. *Journal of Animal Science* 69, 4939-4950.

أداء الضأن الصحراوي السوداني المغذى على مستويات نيتروجين مختلفة في علائق تسمين مبنية أساساً على المولاس

عاصم عبد الرازق على لطفي وسعاد أحمد فضل

**قسم الإنتاج الحيواني ، معهد أبحاث التصحر - المركز القومى
للبحوث ، الخرطوم - السودان**

المستخلص: يستخدم 24 رأساً من ذكور الضأن الصحراوي السوداني ، الغير مخصى والبالغة سنة من العمر وزنها بين 26 و 30 كجم ، في تضمين كامل العشوائية ، بهدف دراسة تأثير تغذية مستويات مختلفة من النيتروجين (14.5% و 16.7% و 18.7% بروتين خام) في علائق تسمين كاملة متساوية في محتواها من الطاقة وبنية أساساً على المولاس على أداء الضأن ، وبعض نواتج التخمير في الكرش (الأمونيا) وبيوريا الدم. لم يكن هنالك تأثير معنوي للمعاملة على متوسط الوزن النهائي ، أو متوسط الزيادة اليومية في الوزن ، وكمية المادة الجافة المأكولة يومياً، وكمية مياه الشرب المستهلكة يومياً ، أو معدل التحويل الغذائي . كان هنالك ميل لزيادة معدل النمو وكمية المادة الجافة المأكولة بزيادة مستوى النيتروجين . أفضل معدل تحويل غذائي وجد عند مستوى 14.5% بروتين خام بينما أظهر مستوى 16.7% بروتين خام أقل معدل تحويل غذائي. كان هنالك تأثير معنوي للمعاملة على الرقم الهيدروجيني في الكرش عندما أخذت العينات قبل تقديم العلائق . لم يكن للمعاملة تأثير معنوي على الأمونيا - نيتروجين وبيوريا الدم عندما أخذت العينات قبل تقديم العلائق و 6 ساعات بعد تقديمها . من ناحية ثانية، فشلت المعاملة في إحداث تأثير معنوي على الأمونيا - نيتروجين ثلث ساعات بعد تقديم العلائق .