

**Sugar Beet (*Beta vulgaris*) Production as Affected by Tillage Systems,
Planting Methods and Irrigation Intervals
in Guneid area (Sudan)¹**

Mohamed H. Dahab¹, Elwaleed M.H. Basheeir²,
Salah Eldin A. Mukhtar³ and Omer A. Abdalla⁴

^{1,4}Faculty of Agriculture, University of Khartoum, Sudan, ²Faculty of Agricultural Sciences, University of Gezira, Sudan, ³Guneid Sugar Cane Research Centre, Sudan

(Received 13/10/2020, Accepted 16 /03/2021, Published on line April 2021)

Abstract: The present research was carried out at Guneid Sugar Cane Research Center during two successive seasons 2013/14 and 2014/15. The objective was to investigate the effect of four tillage systems (moldboard ploughing (T_1), disc ploughing (T_2), chisel ploughing (T_3) and disc harrowing (T_4)), three irrigation intervals (7, 10, and 14 days) and two planting methods (manual and mechanical) on sugar beet production. The parameters measured were machinery performance as effective field capacity (EFC), field efficiency (FE) and Fuel consumption (FC), some soil parameters (soil moisture content and bulk density), some crop parameters (root thickness (RT), crop root yield (RY), polarization or sugar content (Pol %), total sugar production (TSP) and cost of production. A spilt -split plot design with four replications was used in this study. The results showed that all machine performance parameters measured were significantly different and the highest EFC, FE and FC were recorded by the planter, ridger and chisel machines respectively. Tillage treatments and irrigation intervals interaction insignificantly affected soil moisture content and significantly ($P \leq 0.01$) affected soil bulk density. The highest values of RT (38.6 cm), RY (31.9 t/fed), Pol % (19.9 %) and TSP (4.9 t/fed) was recorded by ($T_3 \times M_2 \times I_1$), ($T_2 \times M_1 \times I_2$), ($T_4 \times M_2 \times I_3$) and ($T_2 \times M_1 \times I_1$) treatments respectively. The highest (4280 SDG/fed) and lowest (3290 SDG/fed) total cost of production was

1 Part of a Ph.D thesis by the second author; University of Khartoum

recorded by ($T_1 \times M_1 \times I_1$) and ($T_4 \times M_2 \times I_4$) treatments respectively. It can be concluded that generally disc ploughing with 10 days irrigation interval and manual planting can give higher crop root yield, higher TSP and lower cost of production at Guneid Sugar Cane Research Center.

Keywords: sugar beet, tillage, irrigation interval, planting method, Guneid, net return

INTRODUCTION

Sugar beet (*Beta vulgaris*) is one of the most important sugar production crops (Abdel-Motagally and Attia, 2009). It is a hardy biennial plant whose root contains a high concentration of sucrose (15-20 %). It is grown commercially for sugar production in a wide variety of temperate climates. Sugar beet accounts for 30% of the world's sugar production. During its first growing season, it produces a large (1-2 kg) storage root whose dry mass is 15-20 % sucrose by weight. In commercial sugar beet production, the root is harvested after the first growing season. In most temperate climates, sugar beet is planted in the spring and harvested in autumn (Draycott 2006).

Although, for most situations conventional tillage has been the main tillage method for establishing sugar beet, but since the first part of the 20th century (Ecclestone, 2004), the costs, as well as the environmental concerns have led farmers and researchers to adopt alternative tillage methods and a considerable attention and emphasis on the shift to the conservation tillage methods, *i.e.*, reduced tillage, minimum tillage and no-tillage methods (Iqbal *et al.* 2005; Rashidi *et al.* 2009). Conservation tillage methods may reduce yield of sugar beet (Draycott 2006). Shahram *et al.* (2012) studied the effect of different tillage methods on yield and quality of sugar beet. No significant differences were found in root yield, sugar content, alpha-amino nitrogen and molasses. In a recent study, Alamouti and Navabzadeh (2007) reported that deep tillage had the greatest effect on soil bulk density, organic carbon, infiltration rate, and crop yield compared to semi deep and shallow tillage systems. Sugar beet can be cultivated under any irrigation system. Worldwide, the most prevalent irrigation system is gravity-fed furrow irrigation. However, others showed an improvement in yield and efficiency with the smaller

Sugar beet production at Guneid area

amounts of water that can be applied using drip irrigation (Sharmasarkar *et al.* 2001; Tognetti *et al.* 2003). There are few investigations with respect to the effect of sowing methods on sugar beet productivity. In this concern, Zahoor *et al.* (2007) showed that planting methods significantly affected the root and foliage weights, of sugar beet crop. El-Geddawy *et al.* (2008) showed that mechanical sowing of sugar beet increased root and sugar yield and its components as compared with traditional method (manual sowing). The first trials of sugar beet in Sudan were conducted in nineteen thirties at Gezira Research Station. Some work was carried out by EL-Karouri and EL-Rayh (2006) at Um Dom during 1994/95-1996/97 seasons, sponsored by Arab Authority for Agricultural Investment and Development (AAIID), to investigate the production of some sugar beet genotypes. They reported average root yields of 71.5 - 81.0 ton/ha. These are very high yields compared to the international average yield of 34.2 ton/ha. The average yield of beet produced by Arab countries was 44.2 ton/ha (FAO 1995). The average sucrose content was in the range of 12.4 - 15.7%, which is below the values of sucrose content in Europe, but comparable to beet producing Arab countries. Another experiment was carried out at Um Dom during 1996/97 and 1997/98 seasons by Abdalla and Ali (2004) and Ali and Abdalla (2004) to determine the optimum sowing and harvesting dates for two cultivars of sugar beet. They reported that root and sugar yield were inversely proportional to delay in sowing date, but positively correlated with delay in harvesting date beyond 18 weeks after sowing. Several variety adaptability trials were carried out at Guneid and Sennar 1998/1999, Kenana 2000/2001 (Obeid and Tahir 2003). They all reported encouraging results of root and sugar yields. Root yields as high as 121.87 ton/ha with 15.6 % sugar content was reported in season 2002/2003 in experiments conducted at Dongola Research Station. Therefore, the main objective of this research was to determine the effect of some soil tillage practices, method of planting and irrigation intervals on growth and yield of sugar beet at the central clay plain of Gezira State. The specific objectives, through which the main objective is to be achieved, are the following:

- (1) To evaluate some machinery performance and soil parameters, such as effective field capacity field efficiency, fuel consumption rate, soil bulk density and soil moisture content.
- (2) To determine some crop performance parameters, root thickness, crop root yield, sucrose percent (pol %), and sugar production.

(3) To evaluate the cost of sugar beet production for different treatments

MATERIALS AND METHODS

The study was conducted at Guneid Sugar Cane Research Center which lies on the eastern bank of the Blue Nile, 117 km south of Khartoum, latitude 14°30'N and longitude 33°15'E. The experiment was carried out for two successive growing seasons 2013/14 and 2014/15. The soil is classified as aridisol. The mechanical analysis of the soil showed clay 45 %, sand 28% and silt 27 %. The average bulk density 1.75 % and the average moisture content 15 %. Some chemical properties measured at three depths are shown in Table 1. Guneid Sugarcane Scheme is characterized by relatively cool winters, hot summers, low rainfall, low relative humidity and a potential evapotranspiration exceeding precipitation throughout the year.

Table 1 Some soil chemical properties for the experimental area

Parameter	Depths (cm)		
	0-15	15-30	30-45
pH (1:1)	8.43	8.42	8.43
EC (YS/CM)	641	640.5	695.3
P (ppm)	0.072	0.070	0.070
T.O.C (w/w%)	0.438	0.367	0.384
O.M (w/w%)	0.786	0.623	0.599
N (%)	0.069	0.065	0.066
SAR	1.74	1.98	2.19

Equipments used

Two tractors were used in this research study to draft the implements, Massey Ferguson (ET-80) and the Valtra 180 tractor. The implements used in this experimental work were commonly used for soil tillage in Sudan (FAO 1997).

Other equipments and materials used were, three types of sensitive balances, ELE electric oven, a standard soil auger. Two glass beakers with one litre capacity, Panasonic blender, a venial and filter paper, SUMA saccharimeter, SUMA brixometer, Atomic Absorption Spectrophotometer, Kjelldhal Vapodest 50s, Wagtech conductivity and pH meter, Jenway Spectrophotometer, measuring tape, stopwatch and a measuring cylinder (1000 ml).

Sugar beet production at Guneid area

Treatments and design

The tillage treatments used in the experiment were the following: T_1 Moldboard plough plus disc harrow plus ridging (Mo), T_2 Disc plough plus disc harrow plus ridging (Dp), T_3 Chisel plough plus disc harrow plus ridging (Ch), T_4 Two passes of disc harrowing plus ridging (Ha). The irrigation treatments were the following intervals: (I_1), 7days irrigation interval; (I_2), 10 days irrigation interval; (I_3), 14 days irrigation interval. The planting method treatments were, Manual planting (M_1), Mechanical planting (M_2). The treatments were arranged in a split - split plot design with four replications. Each replication consisted of tillage system treatments as main plot and each main plot was subdivided into two subplots (planting methods) and each subplot was further divided into three sub subplots for irrigation intervals. The main plot was 7 meters wide and 50 meters long. The space between the main plots was five meters and seven meters between replications. The space between sub-subplots was five meters.

Experimental land preparation

The land was prepared by the main tillage treatments (moldboard plough, disc plough, chisel plough and disc harrow) before three weeks from planting for every replication, then the land was harrowed by the disc harrow before one week from planting and also furrowed by ridger at the time of planting.

Cultural practices

Manual planting was carried out by twelve labors for planting the 48 sub subplots using a piece of iron of 1.5 meter long. The space between plants was 15 cm while between rows was 75 cm. Mechanical planting was done by a pneumatic planter with four units which was calibrated and used for planting the other 48 sub subplots. Lenard, monogerm seed variety was used for planting the experimental field.

The first irrigation water was applied after planting and the second one was applied after five days from the first one. From the second irrigation the three intervals of irrigation (7, 10 and 14 days) were applied. Two types of fertilizers were applied, superphosphate and urea. The recommended dose from superphosphate was 50 kg per feddan and was added at seeding. The recommended urea fertilizer was 100 kg per feddan and was applied in two doses, the first at seeding and the second after 45

days from germination. Attakan 350sc insecticide was used to control termites. Two weedings were carried out using a hand tool 'Naggama', the first after one month from planting and the second was after two months. The thinning to 1-2 plants per hole for manual planting was done during the second weeding.

Machinery performance measurements:

Field efficiency

The field efficiency (FE) of the implements and planter was calculated using the following equation:

$$FE (\%) = \frac{Te}{Te + Ta + Tt} \times 100$$

Where:

FE = Field Efficiency.

Te = Actual plot working time.

Ta = Interruption time losses.

Tt = Turning time losses.

Effective field capacity

The effective field capacity (EFC) of the implements and planter was calculated after determining the ground speed (S) of the tractor, using the following equation:

$$EFC = \frac{S \times W \times E}{4.2}$$

Where:

EFC = Effective Field Capacity (fed/hr)

S = Speed of the tractor (km/h).

W = Width of the machine (m).

4.2 = conversion factor to feddans

Fuel consumption

Fuel consumption (FC) for each operation using different machines was measured as follows:

$$FC = \frac{V \times 4200}{A}$$

Sugar beet production at Guneid area

Where:

FC = lit/fed

V = Amount of fuel used to refill the fuel tank (lit).

A = Plot area covered (m²).

Soil moisture content measurement

Soil moisture content (SMC) as percentage was measured four times, before Crop Watt program was applied, after 45 days from planting, after 120 days from planting and at harvesting at three depths (0 – 15 cm, 15 – 30 cm and 30 – 45 cm). The soil moisture content (%) was determined using the following equation (Blake and Hartge, 1986):

$$M.C \% = \frac{W_w - W_d}{W_d} \times 100$$

Where:

M.C% = Percent soil moisture content on dry basis.

Ww = Wet weight of soil sample (gm).

Wd = Dry weight of soil sample (gm).

Soil bulk density measurement

Bulk density (BD) was determined in the laboratory. The samples were taken by auger at three depths, 0 – 15 cm, 15 – 30 cm and from 30 – 45 cm. Samples were dried and the bulk density was determined by the following equation:

$$Bd = \frac{W_d}{V_c} \times 100$$

Where:

Bd= Bulk density (gm/cm³).

Wd = weight of dry sample (gm).

Vc = volume of sample (cm³).

Crop performance measurements

Root thickness (RT)

The tape meter was used to measure the thickness of the tuberous root at harvest. It was measured by putting the measuring tape around the middle of the root and measuring the thickness. Five plants per sub subplot were selected randomly and measured from harvested rows and then the average was taken.

Tuberous root yield (RY)

A spring balance was used to determine the weight of sugar beet root and the weight of the leaves at the end of the season by harvesting one row 7.5 m² from each treatment. The weight of sugar beet roots was determined by the following equations:

$$\text{Sugar beet root yield (t/fed)} = \frac{4200 \times \text{yield of one row kg}}{7.5 \times 1000}$$

Where:

$$7.5 = \text{Area of one row (m}^2\text{)} \quad 4200 = \text{Area of feddan (m}^2\text{)}.$$

Sugar Beet root chemical analysis:

Before beet plants were harvested, 5 tuberous roots were selected randomly from each sub subplot and then topped, cleaned from soil, sliced fine enough and crushed and samples were taken to determine the sugar beet chemical components.

The polarization or sugar content was determined by taking twenty-six mg of sliced beet + reagents (174 cm³ lead acetate), mixed in a blender and filtered. 200 ml of the extract was read in a Saccharimeter according to (ICUMSA 1994).

The sugar production from sugar beet roots in ton sugar per feddan was determined by the following equation:

$$\text{Sugar yield (TSP) (t/ fed)} = \frac{\text{ERS\%} \times \text{Yield of sugar beet per feddan (kg)}}{1000}$$

$$\text{Estimated recovery sugar percent (ERS \%)} = \text{Pol\%} - 2.5$$

Where: 2.5 = Expected losses of sugar content through production.

Crop production cost and statistical analysis

The total cost of sugar beet production was calculated as the cost of inputs used and the cost of different operations which were carried out by renting machinery and labour. Statistic-8 computer program was used for statistical analysis of the data collected.

Sugar beet production at Guneid area

RESULTS AND DISCUSSION

Field Machines Performance

Table 2 shows some field performance parameters of the individual machines used in the experiment. The analysis of variance showed highly significant difference ($P \leq 0.001$) among the implements for three measured parameters.

Table 2. Field performance of individual machines used in the experiment

Parameters	Implements						Prob.
	Mo	DP	Ch	Ha	Ri	Pla	
FE (%)	72.2	69.7	71.4	70.6	73.2	72.5	**
EF.C (fed/hr)	0.70	0.6	1.1	2.0	3.9	5.4	**
FC (liter/fed)	6.6	6.7	7.1	4	3.8	3	**

** highly significant at $P \leq 0.01$ level. Ha= Disc harrow. Ri= Ridger
Pla= Planter.

The main effects of treatments on measured parameters

Table 3 shows significant difference ($P \leq 0.05$) among soil tillage treatments regarding soil moisture content. Also a highly significant difference ($P \leq 0.001$) due to intervals of irrigation effect. The interaction of ($T \times I$) on soil moisture content was insignificant while for bulk density was highly significantly ($P \leq 0.001$). The other interactions showed insignificance among both soil moisture content and bulk density. It was also observed that root thickness (RT), crop root yield (RY), polarization or sugar content percent (Pol%) and total sugar production (TSP) significantly different among the effects of planting methods and irrigation interval except for the Pol %, it was insignificant. Tillage systems effect was insignificant for the above measured parameters. All interactions ($T \times M$), ($T \times I$), ($M \times I$) and ($T \times M \times I$) effects were insignificant except for the interactions ($T \times M$) and ($M \times I$) which showed significant effects on RY and Pol% respectively.

The soil moisture content was generally observed to increase with depth for all tillage treatments. This was in agreement with the result obtained by Romancka *et al.* (2009). The moldboard ploughing tillage treatment

and 14 days irrigation interval was recorded the highest average soil moisture content and bulk density (Table 4). This could be due to better soil pulverization. Planting method was observed to have insignificant effect on both soil moister content and bulk density.

Table 3. Mean squares showing the main effects of tillage system, planting method and irrigation interval on measured parameters during 2014 – 2015 (average of two seasons)

Source of variance	SMC (%)	BD (g/cm ³)	RT(cm)	RY (t/fed)	Pol (%)	TSP (t/fed)
T	8.21*	0.0004*	46.89 ^{ns}	12.76 ^{ns}	14.48 ^{ns}	0.79 ^{ns}
M	204.77 ^{ns}	0.078 ^{ns}	281.88*	149.60**	9.86*	2.27*
T × M	4.06 ^{ns}	0.001 ^{ns}	1.61 ^{ns}	9.15*	3.79 ^{ns}	0.61 ^{ns}
I	964.27*	0.003*	55.17*	38.11**	1.17 ^{ns}	1.60**
T × I	2.84 ^{ns}	0.0004**	10.08 ^{ns}	7.85 ^{ns}	3.64 ^{ns}	0.65 ^{ns}
M × I	29.27 ^{ns}	0.0007 ^{ns}	23.63 ^{ns}	16.86 ^{ns}	11.60*	2.24 ^{ns}
T × M × I	4.39 ^{ns}	0.0005 ^{ns}	17.66 ^{ns}	21.72 ^{ns}	4.32 ^{ns}	0.48 ^{ns}

T = tillage system; M = planting method; I = irrigation interval

SMC = soil moisture content, BD = bulk density, RT = root thickness, RY

= crop root yield, Pol% = sugar content or polarization percent, TSP

= total sugar production

The results of root thickness, crop root yield, sugar pol % and total sugar production are shown in Tables 5 and 6. Disc ploughing tillage treatment recorded the highest average crop yield, sugar pol % and total sugar production, while chisel ploughing recorded the highest root thickness. Shahram *et al.* (2012) reported that moldboard and disc ploughing result in higher sugar beet production due to proper inversion of the soil, field preparation and crop establishment. 10-days irrigation interval gave the highest root thickness and crop root yield which may be due the high moisture content after irrigation that helped in proper root growth and distribution. The highest pol % and sugar production were obtained by 7-days irrigation interval. De Benito *et al.* (2002) reported that an increase in frequency from one to two irrigations per week significantly increased root development and yield. Manual planting recorded the highest crop root yield and total sugar production and this may be due to the high germination percentage and plant population accomplished under the manual planting, which disagreed with the results of Sarauskis *et al.*

Sugar beet production at Guneid area

(2010). While mechanical planting recorded the highest root thickness and sugar pol %. This may be due to available spaces between rows that helped in proper root growth. Therefore, the highest crop root yield was obtained by disc ploughing tillage system at 10-days irrigation interval and manual planting, whereas the total sugar production was recorded by disc ploughing tillage system at 7-days irrigation interval and manual planting.

Table 4. Effect of tillage, planting method and irrigation interval on:
and bulk density

Treatments	M ₁				M ₂									
	I ₁	I ₂	I ₃	Mean	I ₁	I ₂	I ₃	Mean						
<u>Soil moisture content</u>														
T ₁	21.0	23.7	24.8	23.2	21.0	23.4	24.8	23.1						
T ₂	18.2	20.8	22.1	20.0	18.0	21.0	22.8	20.6						
T ₃	16.4	20.7	21.5	19.5	16.3	18.6	19.1	18.0						
T ₄	15.5	18.8	17.6	17.3	16.4	18.0	19.6	18.0						
Mean	17.8	21.0	21.7		17.6	20.2	21.1							
Overall T mean	T ₁ = 23.1		T ₂ = 20.3		T ₃ = 18.7		T ₄ = 17.6							
L.S.D T _(P< 0.05)	2.89													
Overall M mean	M ₁ = 20.1				M ₂ = 19.8									
L.S.D M _(P< 0.05)	0.95													
Overall I mean	I ₁ = 17.7		I ₂ = 20.6		I ₃ = 21.4									
L.S.D I _(P< 0.05)	0.95													
<u>Bulk density</u>														
T ₁	1.24	1.21	1.29	1.25	1.25	1.22	1.28	1.25						
T ₂	1.22	1.20	1.28	1.23	1.23	1.21	1.29	1.24						
T ₃	1.22	1.22	1.26	1.23	1.23	1.21	1.30	1.25						
T ₄	1.20	1.20	1.27	1.22	1.22	1.22	1.27	1.24						
Mean	1.22	1.21	1.27		1.23	1.21	1.28							
Overall T mean	T ₁ = 1.25		T ₂ = 1.23		T ₃ = 1.24		T ₄ = 1.23							
L.S.D T _(P< 0.05)	0.018													
Overall M mean	M ₁ = 1.23				M ₂ = 1.24									
L.S.D M _(P< 0.05)	0.811													
Overall I mean	I ₁ = 1.22		I ₂ = 1.21		I ₃ = 1.27									
L.S.D I _(P< 0.05)	0.013													

T₁= Mo, T₂= Dp, T₃= Ch, T₄= Ha

Table 5. The interaction effect of tillage treatments, methods of planting and irrigation intervals on sugar beet root thickness (cm) and crop root yield (t/fed) 2014/2015

Treatments	M ₁				M ₂				Mean
	I ₁	I ₂	I ₃	mean	I ₁	I ₂	I ₃		
<u>Sugar beet root thickness (cm)</u>									
T ₁	34.5	33.2	31.4	33.0	34.7	37.0	33.1	34.9	
T ₂	33.8	35.9	29.9	33.2	35.3	34.4	33.1	34.3	
T ₃	32.4	33.4	33.3	33.0	38.6	38.3	37.1	38.0	
T ₄	34.8	34.7	32.1	33.9	35.7	34.1	35.4	35.1	
Mean	33.5	34.3	31.7			35.9	35.9	34.7	
Overall T mean		T ₁ =33.9		T ₂ = 33.7		T ₃ = 35.5		T4= 34.5	
L.S.DT (P< 0.05)						4.55			
Overall M means		M ₁ = 33.2						M ₂ = 36.1	
L.S.D M (P<0.05)					1.59				
Overall I means		I ₁ = 34.7		I ₂ = 35.1				I ₃ = 33.2	
L.S.D I (P< 0.05)					1.70				
<u>Crop root yield (t/fed)</u>									
T ₁	29.4	31.2	25.4	28.7	26.7	26.3	21.4	24.8	
T ₂	30.7	31.9	28.0	30.2	29.2	23.9	26.5	26.5	
T ₃	24.6	27.2	22.9	24.9	22.1	27.4	23.6	24.4	
T ₄	27.9	26.3	23.3	25.8	23.1	25.4	22.3	23.6	
Mean	28.1	29.4	24.9		25.3	25.8	23.5		
Overall T mean		T ₁ = 26.75		T ₂ = 28.35		T ₃ = 24.65		T ₄ = 24.7	
L.S.D T (P<0.05)					5.04				
Overall M mean		M ₁ = 27.6						M ₂ = 24.7	
L.S.D M (P<0.05)					1.76				
Overall I mean		I ₁ = 26.7		I ₂ = 27.35				I ₃ = 24.2	
L.S.D I (P<0.05)					2.45				

Sugar beet production at Guneid area

Table 6. Effect of tillage treatments, methods of planting and irrigation intervals on and TSP (t/fed) 2014/2015

Treatments	M ₁			Mean	M ₂			Mean
	I ₁	I ₂	I ₃		I ₁	I ₂	I ₃	
<u>Sugar beet Pol (%)</u>								
T ₁	18.2	16.5	17.4	17.4	18.8	18.7	20.0	19.2
T ₂	18.7	17.3	17.3	17.8	18.1	18.5	16.9	17.8
T ₃	18.5	16.6	16.6	17.2	16.8	18.3	16.8	17.3
T ₄	18.6	17.7	17.8	18.0	18.9	18.6	19.9	19.1
Means	18.5	17.0	17.3		18.2	18.5	18.4	
Overall T means				T ₁ = 18.3	T ₂ = 18.7	T ₃ = 17.25	T ₄ = 18.5	1.45
L.S.DT (P<0.05)								
Overall M means				M ₁ = 17.6			M ₂ = 18.8	
L.S.DM (P<0.05)								1.20
Overall I means				I ₁ = 18.35	I ₂ = 17.75		I ₃ = 17.85	
L.S.DI (P<0.05)								1.20
<u>Total sugar production (t/fed) 2014/2015</u>								
T ₁	4.6	4.3	3.8	4.2	4.3	4.1	3.7	4.0
T ₂	4.9	4.6	4.0	4.5	4.4	3.8	3.7	4.0
T ₃	3.9	3.8	3.2	3.6	3.1	4.3	3.4	3.6
T ₄	4.5	3.9	3.5	4.0	3.8	4.0	3.8	3.9
Means	4.5	4.2	3.6		3.9	4.1	3.7	
Overall T means				T ₁ = 4.1	T ₂ = 4.3	T ₃ = 3.6	T ₄ = 4.0	0.81
L.S.D T (P<0.05)								
Overall M means				M ₁ = 4.1			M ₂ = 3.9	
L.S.D M (P<0.05)								0.40
Overall I means				I ₁ = 4.2		I ₂ = 4.15	I ₃ = 3.65	
L.S.D I (P<0.05)								0.44

The cost of sugar beet production

The total cost (SDG/feddan) of sugar beet production for the different treatments and operations is shown in Table 7. The total cost of tillage treatments showed small differences, but the moldboard ploughing tillage system recorded the highest cost for both planting methods. The average manual planting cost was higher than mechanical planting by 341 SDG and this was mainly due to the high rent cost of labor. On the other hand the 7days irrigation intervals recorded the highest cost of irrigation intervals and this may be due to the number of irrigations during the season. The highest total interaction cost was recorded by the moldboard ploughing tillage system with manual planting and the 7 days irrigation interval (4280 SDG/fed) while the lowest cost was recorded by disc

harrowing with mechanical planting and the 14 days irrigation interval (3290 SDG/fed).

Table 7. The gross returns, total cost and net returns of sugar beet production using different tillage treatments, irrigation intervals and methods of planting (SDG/fed)

Treatments	M ₁				M ₂				Mean
	I ₁	I ₂	I ₃	mean	I ₁	I ₂	I ₃	Mean	
T ₁	4280	3920	3680	3960	3940	3580	3340	3620	
T ₂	4270	3910	3670	3950	3930	3570	3330	3610	
T ₃	4270	3910	3670	3950	3930	3570	3330	3610	
T ₄	4230	3870	3640	3913	3890	3530	3290	3570	
Mean	4263	3902	3665		3922	3562	3320		
Overall M Mean =				M ₁ = 3943 SDG/fed				M ₂ = 3602	
				SDG/fed					

CONCLUSIONS

From the results of this study the following conclusions can be drawn:

1. Generally, soil tillage treatments and irrigation intervals affect soil moisture content and bulk density and improved the crop yield and quality of sugar beet.
2. Irrigation intervals, Methods of planting significantly ($P \leq 0.05$) affect root thickness, crop yield and sugar beet production.
3. The Interactions between the three treatments show no significant differences, but generally disc ploughing with 10 days irrigation interval and manual method of planting record the highest crop yield, higher sugar beet production and lower cost of production.

Sugar beet production at Guneid area

REFERENCES

Abdalla, R. S. and Ali, A. M. (2004). Study of the Growth and Fresh Root Yield of Sugar Beet (*Beta vulgaris* L.) in the Semi-arid Environment of Northern Central Sudan. *Journal of Agricultural Investment*; 2(1), 109 –119.

Abdel-Motagally, F.M.F. and Attia, K.K. (2009). Response of sugar beet plants to nitrogen and potassium fertilization in sandy calcareous soil. *International. Journal Of Agriculture and Biology*. 11, 695-700.

Ali, A. M. and Abdalla, R. S. (2004). Sugar Beet (*Beta vulgaris* l.) root yield and quality as influenced by the sowing date and time of harvesting in the semi-arid environment of northern central Sudan. *University of Khartoum Journal of Agricultural Sciences* 12(1), 35 – 46

Alamouti, M.Y. and Navabzadeh, M. (2007). Investigating of plowing depth effect on some soil physical properties. *Pakistan Journal of Biological Sciences* 10, 4510-4514.

Blake, G.R. and Hartge, K.H. (1986). Bulk density. In. A. Klute (ed.) methods of soil analysis part physical and mineralogical methods 2nd edition, Madison. WI USA, pp. 363-373.

De Benito, A.; Estrada, M.A. and Sombrero, A. (2002). Frequence de l'irrigation et dose d'apports. Deux facteurs de base sur le developpement et rendement de la betterave a sucre. *Proceedings of IIRB Congress, Mediterranean Section*. Marrakech, pp. 37-47.

Draycott, A.P. (2006). Introduction, pp. 1-8. Sugar beet book. UK: Blackwell Publishing house.

Ecclestone, P. (2004). To plough or not to plough? *British Sugar Beet Review*, 72, 7-11.

El-Gedday, I.H.; K.A. Kheiralla, Y.Y.; Darweish and E.A. Sharaf. (2008). Agricultural practices in relation to yield and quality of sugar beet: Yield and yield components. *Sugar Technology* 10, 227-233.

EL Karouri, M.O. and El Rayeh, A. (2006). Prospects of sugar beet production in the Sudan. *Journal of agricultural investment (JAI)*. 4, 89-92

FAO, (1995). Food and Agriculture Organization, production yearbook. Vol 48 FAO statistics series, 125 Rome, Italy.

FAO, (1997). Farm Implement for Arid and Tropical Regions. Food and Agriculture Organization of the United Nations, Rome, Italy, 74, 44-45.

ICUMSA, Method Book, (1994). International Commission for Uniform Methods of Sugar Analysis, GS 6(1-3).

Iqbal, M.; Hassan, A.U.; Ali, A. and Rizwanullah, M. (2005). Residual effect of tillage and farm manure on some soil physical properties and growth of wheat (*Triticum aestivum L.*). *International Journal of Agriculture and Biology* 7, 54-57.

Obeid, A. and Tahir, M. (2004). Evaluation of some tropical sugar beet (*Beta vulgaris*) cultivars. Unpublished report of Kenana Research Station. Sudan.

Rashidi, M.; Gholami, M. and Khabbaz, B.G. (2009). Response of yield and yield components of tomato (*Lycopersicon esculentum*) to different tillage methods. *International Journal of Agriculture and Biology* 11, 626-630.

Romanecka, K.R.; Romaneckien, C.; Šarauskis, E.; Pilipavicius, V. and Sakalauskas, A. (2009). The effect of conservation primary and zero tillage on soil bulk density, water content, sugar beet growth and weed infestation. *Agronomy Research*, 7(1), 73-86.

Sugar beet production at Guneid area

Sarauskis, E.; Godlinski, F.; Sakalauskas, A.; Schlegel, M. and Kanswohl, N. (2010). Effect of soil tillage and sowing systems on sugar beet production under the climatic conditions of Lithuania. *Landbauforschung Volkenrode*, 60, 101-110.

Shahram, M.N.; Majid, R.; Seyyed, M.O.M. and Mehrdad, N. (2012). Effect of Different Tillage Methods on Yield and Quality of Sugar Beet. Ardabil Province Jahad-e-Keshavarzi Education Center, Ardabil, Iran Department of Agricultural Machinery, Takestan Branch, Islamic Azad University, Takestan, Iran Middle-East *Journal of Scientific Research*, 12(6), 859-863.

Sharmasarkar, F.C.; Sharmasarkar, S.; Miller, S.D.; Vance, G.F. and Zhang, R. (2001). Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets. *Agricultural Water Management*, 46: 241-251.

Tognetti, R.; Palladino, M.; Minnoccia, A.; Delfine, S. and Alvino, A. (2003). The response of sugarbeet to drip and low-pressure sprinkler irrigation in southern Italy. *Agricultural Water Management*, 60, 135-155.

Zahoor. A.; Faridullah, P.; Shah, K.; Kakar, M. and Sanaullah, B. (2007). Sugar beet (*Beta vulgaris* L.) response to different planting methods and row geometries I. Effect on plant growth and yield. *Archive Agronomy Soil Sci.*, 53, 49-61.

إنتاج بنجر السكر (*Beta vulgaris*) وتأثيره بحزم نظم الحراثة وطرق الزراعة وفترات الري في منطقة الجنيد (السودان)²

محمد حسن دهب¹ الوليد محمد حسن² ، صلاح الدين عبدالقادر مختار³ ، عمر احمد
عبد الله¹

¹جامعة الخرطوم ، كلية الزراعة، ²جامعة الجزيرة ، كلية العلوم الزراعية، ³مركز
ابحاث سكر الجنيد

المستخلص: أُجري هذا البحث في مركز ابحاث سكر الجنيد في موسمين متتالين 2013/14 و 2014/15. كان الهدف دراسة تأثير أربعة أنظمه للحراثة (حراثة مطربية، حراثة قرصية، حراثة إزميلية وحراثة بالمشط القرصي) وثلاث فترات للاري (7، 10، و 14 يوم) وطريقتين للزراعة (يدوية وmekanikية) على إنتاجية بنجر السكر. وكانت المعاملات قياس أداء الآلات (السعه الحقلية الفعلية، الكفاءه الحقلية واستهلاك الوقود)، وبعض معاملات التربة (المحتوى الرطوبى وكثافه التربه) وبعض المعاملات للمحصول (سمك الجذر ، انتاجية المحصول، الاستقطاب أو محتوى السكر، وإنتاجية السكر) وتكلفة الإنتاج. تم استخدام تصميم القطع المنشقة-المنشقة باربعة تكرارات. أظهرت النتائج أن كل معاملات أداء الآلات اظهرت فروق معنوية. وسجلت الة الزراعه، الطراد والمحراث الإزميلي أعلى سعه حقلية فعليه، كفاءه حقلية ومعدل استهلاك للوقود على التوالى. كان تأثير تفاعل نظم الحراثه مع فترات الري على المحتوى الرطوبى للتربة غير معنوية، ومعنوية على الكثافة الظاهرية للتربة عند ($P \leq 0.01$). أعلى قيم ل RT

² مسالة من اطروحة الدكتوراه للمؤلف الثاني، جامعة الخرطوم

(سم38.6، RY 31.9 طن/فدان)، (TSP 4.9% طن/فدان) و (19.9% P01%) تم تسجيلها بالتفاعلات $(T_2 \times M_1 \times I_2)$ ، $(T_3 \times M_2 \times I_3)$ ، $(T_4 \times M_2 \times I_1)$ و $(I_1 \times T_2 \times M_1)$ على التوالي. وسجلت أعلى تكلفة (4280 جنيه سوداني / فدان) واقل تكلفة (3290 جنيه سوداني / فدان) اجمالية لإنتاج سكر البنجر لتفاعلات المعاملات $(I_1 \times T_1 \times M_1 \times I_4)$ و $(T_4 \times M_2 \times I_4)$ على التوالي. يمكن الاستخلاص بصحة عامة ان الحالة القرصية مع طريقة الزراعة اليدوية و الري كل 10 ايام يمكن ان يؤدي الى انتاجية عالية لمحصول بنجر السكر وسكر البنجر فى مركز ابحاث قصب السكر بجنيد.