

First Report on *mecC*- positive Methicillin-Resistant *Staphylococcus aureus* Strains in the Sudan

Amani M. S. Alboshra^{1,2,4}, Enass M. Abdallah^{1,3}, Suleiman M. El Sanousi⁴, Gusai H. Abdel-Samad⁵, Mohamed T. Musa⁶, Sharfi A. O. Ahmed⁷, Reem M. A. Elsanousi⁸, Kamal H. Eltom^{1*}

¹Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, 13314 Shambat, Khartoum North

²Directorate of Quarantines and Meat Hygiene, Ministry of Animal Resources and Fisheries, Khartoum

³Directorate of Animal Health and Epidemics Control, Ministry of Agriculture, Irrigation and Animal Resources, El Fasher, North Darfur State

⁴Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North

⁵Department of Microbiology, College of Veterinary Medicine, University of Bahri, Khartoum North

⁶Department of Surgery, Faculty of Medicine, University of Khartoum, Khartoum

⁷ENT Department, Faculty of Medicine, Omdurman Islamic University Omdurman

⁸Department of Microbiology, College of Medicine, University of Bahri, Khartoum

*Corresponding author: kamal@uofk.edu

Abstract

Methicillin-resistant *Staphylococcus aureus* (MRSA) has been reported in many countries as a cause of human infections acquired in hospitals and in the community as well as a cause of animal infections; however, little is known about it in the Sudan, especially in animals and animal products. This study aimed mainly at investigating MRSA in liver abscesses of sheep, as many Sudanese consume raw livers. Intact liver abscesses were collected from sheep slaughtered in 3 abattoirs in Khartoum State and subjected to bacteriological culture for isolation and further molecular characterization of *S. aureus*. Out of 100 liver abscesses, only 4 *S. aureus* isolates were obtained, all of which were resistant to methicillin by the disc diffusion method, but the methicillin resistance gene (*mecA*) was detected in only one of them. When these isolates were tested with primers for the *mecA* gene novel analogue (*mecC*), 3 of them were positive, including the *mecA* positive one. PCR for amplification of haemolysin (*hlg*), Panton-Valentine lecukocidin (*pvl*) and toxic shock syndrome toxin (*tsst*) genes showed that one *mecC*- positive isolate was also positive for *pvl*, but neither *hlg* nor *tsst* was detected in any of these isolates. The results of this study are of public health importance because of the potential zoonotic transmission of *mecC*- positive *S. aureus* strains. Furthermore, this is the first report of *mecC*- positive MRSA strains in the Sudan.

Keywords: liver abscess, MRSA, *mecA*, *mecC*, *hlg*, *pvl*, *tsst*

الخلاصة

سُجلت المكورات العنقودية المقاومة لعقار الميتشيللين (مرسا) في عدد من الأقطار على أنها مسبب للعدوى البشرية المكتسبة في المستشفيات و في المجتمع، و كذلك على أنها مسبب لإصابات في الحيوان، إلا أن القليل معروف عنها في السودان، خاصةً في الحيوان و منتجاته. هدفت هذه الدراسة إلى استقصاء مرسا في الدمام الكبدية في الضأن و ذلك لأن بعض السودانيين يتناولون الكبد نيناً. جمعت دمام كبدية سليمة من ثلاثة مسالخ في ولاية الخرطوم و أخذت للتربيع البكتيري لعزل المكورات العنقودية الذهبية و من ثم توصيفها جزيئاً. من بين مائة دمل كبد حصل على 4 عزلات من المكورات العنقودية الذهبية، كُلُّهن مقاومات للميتشيللين بطريقة الانتشار الفرصي، إلا أن مورثة مقاومة الميتشيللين (*mecA*) وجدت في واحدة منها فقط. عندما اخترقت هذه العزلات ببادئ النظير المستجد لمورثة *mecA* كانت تلات منها مورثات *mecC* بما فيها تلك الموجبة لمورثة *mecA*. أظهر اختبار البلمرة السلسلية لمضاعفة كل من مورثات حلة الدم (*hlg*)، و بانتون - فالنتين حلة الكريات البيض (*pvl*)، و زيفان مُتلازمة الصدمة السمية (*tsst*) أن تلك العزلة الموجبة لمورثة *mecC* موجبة أيضاً لمورثة *pvl*، ولكن لم تؤخذ مورثة *hlg* و لا مورثة *tsst* في أي من هذه العزلات. نتائج هذه الدراسة ذات أهمية للصحة العامة و ذلك بسبب احتمال انتقال عترات المكورات العنقودية الذهبية الموجبة لمورثة *mecC* إلى الإنسان. علاوة على ذلك، فهذا أول تقرير عن مرسا موجبة لمورثة *mecC* في السودان.

Introduction

Staphylococcus aureus is one of the most important bacterial pathogens known today. It has been incriminated in a wide range of illnesses in both humans and animals, in addition to food poisoning. However, *S. aureus* strains can acquire or develop resistance to many antibiotics and to produce many of enzymes and toxins as main factors of causing diseases. Methicillin-resistant *S. aureus* (MRSA) strains have acquired resistance to methicillin by the production of an altered penicillin-binding protein (PBP) known as PBP2' (PBP2a), which has reduced binding affinity to the beta-lactam antibiotics (Reynolds and Brown, 1985; Utsui and Yokota, 1985). This PBP2a is encoded by the methicillin resistance gene (*mecA*), which is carried in the staphylococcal cassette chromosome *mec* (*SCCmec*) elements (Katayama *et al.*, 2000). However, another MRSA having a novel *mecA* homologue (*mecA_{LGA251}*), called *mecC*, carried on the *SCCmec*, was identified in 2011; it codes for a different version of PBP2a, which is thought to interfere also with the effects of beta-lactam antibiotics on cell walls. MRSA isolates carrying *mecC* have been recovered from humans, ruminants, pets, and other animals such as rats, seals, and guinea pigs (Paterson *et al.*, 2012). Besides carrying the genes coding for resistance against beta-

lactams (penicillins and cephalosporins), the *SCCmec* elements also contain some other genes coding for multiple resistance against non-beta lactam antibiotics (Turlej *et al.*, 2011).

MRSA was firstly identified in humans in the 1960s associated with nosocomial infections (hospital/ health-care acquired MRSA, HA-MRSA) and later with community acquired infections (community- associated MRSA, CA-MRSA) (Chambers and Deleo, 2009). But, after decades, some strains of MRSA were reported in animals (Farzana *et al.*, 2004; Lee, 2003) – termed livestock- associated MRSA (LA-MRSA) – and, accordingly, attracted the attention of the researchers about the possibility of their transmission between animals and humans, which has been documented by some studies (Harrison *et al.*, 2013; Steinman *et al.*, 2015).

Staphylococcus aureus has been known as one of the bacterial causes of liver abscesses in sheep (Prax *et al.*, 2013), a pathological condition leading to condemnations of livers during meat inspection in slaughterhouses to prevent transmission of zoonotic pathogens to humans (Gezu and Addis, 2014). However, improper handling of condemned livers and other organs can lead to contamination of carcasses and other healthy organs with

pathogenic organisms. In the Sudan, people traditionally consume raw livers, especially during Eid Al- Adha fest, in which sheep are slaughtered away from any veterinary supervision. The present investigation was designed to investigate for MRSA in liver abscesses of sheep due to the possible hazards to human health.

Materials and Methods

Samples

A total number of 100 intact abscesses were collected from livers during meat inspection of sheep slaughtered in three abattoirs in Khartoum State (Omdurman, Khartoum, and Khartoum North), Sudan and carried to the laboratory for bacteriological investigations. Animals were brought to these abattoirs from different animal breeding areas of the country.

Isolation of bacteria

The intact abscess capsule was sterilized by the red- hot spatula before being incised by a sterile scalpel blade. Using a sterile loop, the pus was inoculated onto blood agar or mannitol salt agar plates and incubated at 37 °C for 18 – 24 h. Smears were made from all obtained colonies and stained with Gram stain. Colonies of Gram-positive, catalase-positive cocci were sub-cultured onto nutrient agar plates for purification. Further biochemical tests for identification of isolates were selected based on the Flow Chart for Identification of *Staphylococcus* species (El Sanousi *et al.*, 2015). Biochemical tests were performed according to Cowan and Steel's manual for the identification of medical bacteria (Barrow and Feltham, 1993). Isolates identified as *Staphylococcus* spp. were subjected to PCR for confirmation of identity and molecular characterization of *S. aureus*.

Antibiotic susceptibility testing

Susceptibility to methicillin was determined by the presence or absence of

inhibition zone around filter paper discs containing 5 µg of methicillin placed on Mueller – Hinton agar plates after being streaked with the suspension of *S. aureus* and incubated at 37 °C for 24 h.

PCR

The DNA was extracted from pure bacterial cultures using the QIAgen mini blood kit (Qiagen, Hilden, Germany). Briefly, 5 – 7 colonies were suspended in 100 µl of distilled water to which 10 µl of 10% lysostaphin (Sigma-Aldrich, Taufkirschen, Germany) were added and then incubated at 37 °C for 30 min. Further follow-up steps were made according to the manufacturer's instructions. The PCR reaction mixture (20 µl) consisted of 3 µl of DNA template, 10 pmol/ µl each primer, and 15 µl of Maxime PCR ready mix (iNTRON, Seoul, Korea). DNA from isolates identified as staphylococci by conventional bacteriology was subjected to PCR amplification of the *tuf* gene as described previously (Martineau *et al.*, 2001). Primers for the *nuc* gene (Brakstad *et al.*, 1992) were used to identify *S. aureus* among the *tuf* positive isolates. Primers for amplification of *mecA* (Strommenger *et al.*, 2003) and *mecC* (García-Álvarez *et al.*, 2011) genes were used for the detection of methicillin resistance genes. Primers for *pvl* (Lina *et al.*, 1999), *hlg* and *tsst* (da Cunha Mde *et al.*, 2007) were used to test the isolates for harbouring Panton-Valentine Leukocidin, haemolysin, and toxic shock syndrome toxin genes, respectively. PCR amplification conditions described by respective authors were used. The primers used in this study are listed in Table 1. The PCR assays were performed with a Genius thermal cycler (Techne, Cambridge, England) to provide the required thermal cycling profiles. PCR products (7 µl each) were subjected to electrophoresis in 1% agarose gel to which RedSafe stain (iNTRON) was added and visualized under UV illumination and photographed afterwards using a gel documentation system (Major Science, Seoul, Korea).

Table 1. Oligonucleotides used in this study

Primer	Sequence 5' – 3'	Gene	Reference
TStaG422	GGCCGTGTTAACGTGGTCAAATCA		
TStag765	TIACCATTCACTACCTCTGGTAA	<i>tuf</i>	(Martineau <i>et al.</i> , 2001)
nuc F	GCGATTGATGGTGATACGGTT		
nuc R	AGCCAAGCCTTGACGAACAAAGC	<i>nuc</i>	(Brakstad <i>et al.</i> , 1992)
mecA1	AAAATCGATGGTAAAGGGTGGC		
mecA2	AGTTCTGCAGTACCGGATTGC	<i>mecA</i>	(Strommenge <i>r et al.</i> , 2003)
mecA_LGA2 5' 1FP	TCACCAGGTTCAACYCAAAA		
mecA_LGA2 5' 1RP	CCTGAATCWGCTAATAATATTTC	<i>mecC</i>	(García-Álvarez <i>et al.</i> , 2011)
lukPV-1	ATCATTAGGTAAAATGTCTGGACATGATC CA		
lukPV-2	GCATCAASTGTATTGGATAGCAAAAGC		
hlg-1	GCCAATCCGTTATTAGAAAATGC	Haemolysin (hlg)	
hlg-2	CCATAGACGTAGCAACGGAT		
tst1	ATGGCAGCATCAGCTTGATA	Toxic shock syndrome toxin (tsst)	(da Cunha Mde <i>et al.</i> , 2007)
tst2	TTTCCAATAACCACCCGTTT		

Results and Discussion

Out of 100 liver abscesses, 110 Gram-positive cocci isolates were recovered, out of which only 4 isolates were identified as *S. aureus* (positive for coagulase, xylose, and anaerobic fermentation of 1% mannitol). The 4 *S. aureus* isolates were

resistant to methicillin by the disc diffusion method and were positive for the *tuf* and *nuc* genes in PCR. The *SCCmec* was detected in 3 isolates by PCR amplification of *mecC* gene; *mecA* was amplified in one of these 3 isolates as well (Table 2). While a positive PCR result for *pvl* was obtained for one of the *mecC*- positive isolates, none of the isolates was positive for *hlg* or *tsst* genes (Table 2).

Table 2. PCR results of *Staphylococcus aureus* isolates obtained from liver abscesses of sheep slaughtered in abattoirs in Khartoum State, Sudan

Isolate	Genes tested in PCR				
	<i>mecA</i>	<i>mecC</i>	<i>pvl</i>	<i>hlg</i>	<i>tsst</i>
3-1	-	+	+	-	-
30	-	-	-	-	-
55-1	-	+	-	-	-
55-3	+	+	-	-	-
3-1	-	+	+	-	-

These results showed that *S. aureus* was incriminated in 4% of liver abscess of sheep slaughtered in Khartoum State. Unpublished data of a similar study (Musa, 2007) from the western part of the Sudan obtained more or less the same results. In that study, the author isolated *S. aureus* from 3.1% of liver abscesses while he was investigating the causes of liver condemnations in Nyala abattoir. Because most of the sheep slaughtered in Khartoum State are brought from the sheep breeding areas in the western parts of the country, it was expected to have results in sheep slaughtered in Khartoum State more or less similar to those of Nyala. However, in a similar study conducted in Iran (Ghadrdan-Mashhadi *et al.*, 2006), *S. aureus* constituted 18% of the isolated bacteria. The 4 *S. aureus* isolates of the present study were phenotypically resistant to methicillin, i.e. they were MRSA. Resistance to methicillin is mediated by the *mec* operon, which is part of the staphylococcal cassette chromosome *mec* (*SCCmec*) element (Katayama *et al.*, 2000). The presence of this element was proved by PCR in 3 out of the 4 *S. aureus* isolates. However, the *mecA* novel homologue (*mecC*) was dominant in these isolates. This homologue was firstly identified in the bovine MRSA strain LGA251 (Shore *et al.*, 2011). Large scale studies on *S. aureus* collections in the UK and Denmark with whole- genome sequencing of methicillin- resistant, but *mecA* negative strains (García-Álvarez *et al.*, 2011; Harrison *et al.*, 2013), identified this new homologue in both bovine and human isolates augmenting a zoonotic reservoir. Before the identification of this homologue, some isolates harbouring it were considered methicillin- sensitive strains, as *mecA* was not detectable by conventional or real-time PCR (Shore *et*

al., 2011). This might partially explain the results obtained by some investigators (Elhassan *et al.*, 2015; Olayinka *et al.*, 2010), who detected methicillin- resistance in *S. aureus* by the antibiotic susceptibility testing without being able to detect the *mecA* gene. However, in a parallel study by the same authors on *S. aureus* from human and animal sources, neither *mecA* nor *mecC* was detected in most of the phenotypically methicillin- resistant isolates (data not published yet). It is noteworthy that both *mecA* and *mecC* were detected in one isolate in this study. Further investigations on these methicillin- resistant isolates of *S. aureus* by whole genome sequencing will help in understanding the underlying mechanism of resistance to beta-lactams and to other antibiotics. With the zoonotic potential of *mecC*- positive MRSA, detection of *pvl* gene in one of the 3 *mecC* positive isolates represents a public health hazard, as sequelae of *pvl*-positive infections tend to be more severe than *pvl*-negative *S. aureus* (Gillet *et al.*, 2002; Zhang *et al.*, 2016).

It is noteworthy that while all *S. aureus* isolated in this study from liver abscesses of sheep are MRSA, liver abscesses in humans caused by MRSA are very rare (Carilli *et al.*, 1999; Cherian *et al.*, 2016). To the best of our knowledge, no literature is available on MRSA in liver abscesses in animals.

In conclusion, this is the first report of *mecC* positive MRSA in the Sudan. However, despite the low prevalence of *S. aureus* in this study, the finding that all *S. aureus* isolates from a pathological condition in food animals are MRSA represents an important finding which requires further investigations and actions on this pathogen.

Acknowledgements

This study was funded by a grant from the Ministry of Higher Education and Scientific Research, Sudan.

References

Barrow, G. I. and Feltham, R. K. A. (1993). Cowan and Steel's manual for the identification of medical bacteria, 3rd Ed. Cambridge University Press, Cambridge, UK.

Brakstad, O. G., Aasbakk, K. and Maeland, J. A. (1992). Detection of *Staphylococcus aureus* by polymerase chain reaction amplification of the nuc gene. *J. Clin. Microbiol.*, 30: 1654–1660.

Carilli, S., Emre, A., Berke, E. and Çalangu, S. (1999). Liver abscess secondary to methicillin-resistant *Staphylococcus aureus*. *Hpb.*, 1: 227–229.

Chambers, H. F. and Deleo, F. R. (2009). Waves of resistance: *Staphylococcus aureus* in the antibiotic era. *Nat. Rev. Microbiol.*, 7: 629–641.

Cherian, J., Singh, R., Varma, M., Vidyasagar, S. and Mukhopadhyay, C. (2016). Community-Acquired Methicillin-Resistant Pyogenic Liver Abscess: A Case Report. *J. Investig. Med. High. Impact. Case Rep.*, 4: 2324709616660576.

da Cunha Mde, L., Calsolari, R. A. and Junior, J. P. (2007). Detection of enterotoxin and toxic shock syndrome toxin 1 genes in *Staphylococcus*, with emphasis on coagulase-negative staphylococci. *Microbiol. Immunol.*, 51: 381–390.

El Sanousi, S. M., Said, K. B., Elbager, S., Awad, A., Rodwan, K. and Eltom, K. H. (2015). A flow chart for the identification of *Staphylococcus* species. *J. Vet. Med. Anim. Prod.* 6: 93–97.

Elhassan, M. M., Ozbak, H. A., Hemeg, H. A., Elmekki, M. A. and Ahmed, L. M. (2015). Absence of the *mecA* gene in methicillin resistant *Staphylococcus aureus* isolated from Different clinical specimens in Shendi City, Sudan. *Biomed. Res. Int.*, 2015: 895860.

Farzana, K., Shah, S. N. H. and Jabeen, F. (2004). Antibiotic resistance pattern against various isolates of *Staphylococcus aureus* from raw milk samples. *J Res (Science) Bahauddin Zakariya University, Multan, Pakistan*, 15: 419–427.

García-Álvarez, L., Holden, M. T. G., Lindsay, H., Webb, C. R., Brown, D. F. J., Curran, M. D., Walpole, E., Brooks, K., Pickard, D. J., Teale, C., Parkhill, J., Bentley, S. D., Edwards, G. F., Girvan, E. K., Kearns, A. M., Pichon, B., Hill, R. L. R., Larsen, A. R., Skov, R. L., Peacock, S. J., Maskell, D. J. and Holmes, M. A. (2011). Meticillin-resistant *Staphylococcus aureus* with a novel *mecA* homologue in human and bovine populations in the UK and Denmark: a descriptive study. *Lancet Infect. Dis.*, 11: 595–603.

Gezu, M. and Addis, M. (2014). Causes of Liver and Lung Condemnation among Apparently Healthy Slaughtered Sheep and Goats at Luna Abattoir, Modjo, Ethiopia. *Adv. Biol. Res.*, 8: 251–256.

Ghadrdan-Mashhadi, A., Gorban-Poor, M. and Soleimani, M. (2006). Bacteriological study of liver abscesses in sheep in Ahvaz (Iran). *Pakist. J. Biol. Sci.*, 9: 2162–2164.

Gillet, Y., Issartel, B., Vanhems, P., Fournet, J.-C., Lina, G., Bes, M., Vandenesch, F., Piémont, Y., Brousse, N. and Floret, D. (2002). Association between *Staphylococcus aureus* strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. *The Lancet* 359: 753–759.

Harrison, E. M., Paterson, G. K., Holden, M. T., Larsen, J., Stegger, M., Larsen, A. R., Petersen, A., Skov, R. L., Christensen, J. M., Bak Zeuthen, A., Heltberg, O., Harris, S. R., Zadoks, R. N., Parkhill, J., Peacock, S. J. and Holmes, M. A. (2013). Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel *mecA* homologue *mecC*. *EMBO Mol. Med.*, 5: 509–515.

Katayama, Y., Ito, T. and Hiramatsu, K. (2000). A new class of genetic element, *Staphylococcus* cassette chromosome *mec*, encodes methicillin resistance in

Staphylococcus aureus. Antimicrob. Agents Chemother. 44: 1549–1555.

Lee, J. H. (2003). Methicillin (Oxacillin)-resistant *Staphylococcus aureus* strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol., 69: 6489–6494.

Lina, G., Piemont, Y., Godail-Gamot, F., Bes, M., Peter, M. O., Gauduchon, V., Vandenesch, F. and Etienne, J. (1999). Involvement of Panton-Valentine leukocidin-producing *Staphylococcus aureus* in primary skin infections and pneumonia. Clin. Infect. Dis., 29 : 1128–1132.

Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, P. H., Ouellette, M., Bergeron, M. G. (2001). Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol., 39: 2541–2547.

Musa, K. A. A. (2007). The Prevailing Causes of Sheep Liver Condemnations in Nyala North Abattoir. MVSc Thesis, University of Khartoum, Sudan.

Olayinka, B. O., Olayinka, A. T., Obajuluwa, A. F., Onaolapo, J. A. and Olurinola, P. F. (2009). Absence of *mecA* gene in methicillin-resistant *Staphylococcus aureus* isolates. Afr. J. Infect. Dis., 3: 49–56.

Paterson, G. K., Larsen, A., Robb, A., Edwards, G., Pennycott, T., Foster, G., Mot, D., Hermans, K., Baert, K. and Peacock, S. (2012). The newly described *mecA* homologue, *mecA* LGA251, is present in methicillin-resistant *Staphylococcus aureus* isolates from a diverse range of host species. J Antimicrob. Chemother., 67: 2809–2813.

Prax, M., Lee, C. Y. and Bertram, R. (2013). An update on the molecular genetics toolbox for staphylococci. Microbiology, 159: 421–435.

Reynolds, P. E. and Brown, D. F. J. (1985). Penicillin-binding proteins of β -lactam-resistant strains of *Staphylococcus aureus*. FEBS Lett., 192: 28–32.

Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O'Connell, B., Monecke, S., Ehricht, R. and Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome *mec* type XI carrying highly divergent *mecA*, *mecI*, *mecR1*, *blaZ*, and *ccr* genes in human clinical isolates of clonal complex 130 methicillin-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother. 55: 3765–3773.

Steinman, A., Masarwa, S., Tirosh-Levy, S., Gleser, D., Kelmer, G., Adler, A., Carmeli, Y. and Schwaber, M. J. (2015). Methicillin-Resistant *Staphylococcus aureus* spa Type t002 Outbreak in Horses and Staff at a Veterinary Teaching Hospital after Its Presumed Introduction by a Veterinarian. J. Clin. Microbiol., 53: 2827–2831.

Strommenger, B., Kettlitz, C., Werner, G. and Witte, W. (2003). Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in *Staphylococcus aureus*. J. Clin. Microbiol., 41: 4089–4094.

Turlej, A., Hryniwicz, W. and Empel, J. (2011). Staphylococcal cassette chromosome *mec* (Sccmec) classification and typing methods: an overview. Pol. J. Microbiol., 60: 95–103.

Utsui, Y. and Yokota, T. (1985). Role of an altered penicillin-binding protein in methicillin- and cepham-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother., 28: 397–403.

Zhang, C., Guo, L., Chu, X., Shen, L., Guo, Y., Dong, H., Mao, J. and van der Veen, S. (2016). Presence of the Panton-Valentine Leukocidin Genes in Methicillin-Resistant *Staphylococcus aureus* Is Associated with Severity and Clinical Outcome of Hospital-Acquired Pneumonia in a Single Center Study in China. PLoS One, 11: e0156704.