




## **Influence of Age on Serum Protein Capillary Electrophoretic Pattern in Clinically Healthy Calves with Special Emphasis on Serum Globulins**

**Nawal M. Elkhair<sup>1\*</sup> and H. Hartmann<sup>2</sup>**

### **Abstract**

The objective of this study was to characterise serum protein capillary electrophoretic pattern in relation to the age in calves. Thirty two German Black-coloured and crossbred calves (age: 4-104 days) were used. Venous blood samples were collected from the jugular vein and were used for the determination of serum protein; by capillary electrophoresis technique. The age of the calves correlated positively ( $P<0.01$ ) with serum albumin concentration and albumin/globulin ratio. The youngest calves in the first week of life showed significantly ( $P<0.05$ ) lower mean serum albumin compared to the older calves of 2-3 months. The concentrations of  $\alpha_1$ ,  $\beta$ - and  $\gamma$ - globulin were not affected significantly by age. The young calves in the 2<sup>nd</sup> week of life showed significantly ( $P<0.01$ ) higher mean value for  $\alpha_2$  globulin concentration compared to the old calves (1-3 months). Albumin/globulin ratio showed significantly ( $P<0.01$ ) higher value in the young calves in the 2<sup>nd</sup> week of life compared to the old calves in the age of 1-2 months. These values were compared to those reported by other investigators in calves, adult cattle and other animals. The results indicate that the serum electrophoresis pattern of the calves is influenced by age.

**Key words:** calves, age, serum protein, capillary electrophoresis.

### **المستخلص**

تمت دراسة نمط الترحيل الكهربائي الشعيري لبروتينات مصل الدم وعلاقته بالعمر. أجريت الدراسة في 32 جعل من السلالة الألمانية ذات اللون الأسود والسلالة الهجين (العمر: 4-104 يوماً). جمعت عينات من الدم الوريدي من الوريد الوداجي وإنستخدمنا لتقدير بروتينات مصل الدم باستخدام تقنية الترحيل الكهربائي الشعيري. أوضحت النتائج أن عمر العجول إرتباطاً إيجابياً ( $P<0.01$ ) مع تركيز الألبومين المصل ونسبة الألبومين/القلوبيولين. أظهرت العجول الأصغر سنًا في الأسبوع الأول من الحياة إنخفاضاً معنوياً ( $P<0.01$ ) في متوسط الألبومين مصل الدم بالمقارنة مع العجول كبيرة السن في عمر 2-3 أشهر. ألفا<sub>1</sub> ( $\alpha_1$ ) ، جاما ( $\gamma$ ) وبيتا ( $\beta$ ) -قلوبيولين لم تتأثر بشكل ملحوظ بالعمر. أظهرت العجول الصغيرة في الأسبوع الثاني من الحياة أعلى قيمة ذات دلالة احصائية ( $P<0.01$ ) لتركيز القلوبيولين ألفا<sub>2</sub> ( $\alpha_2$ ) بالمقارنة مع العجول كبيرة السن (3-1 أشهر). أظهرت نسبة الألبومين/القلوبيولين أعلى قيمة معنوية ( $P<0.01$ ) في العجول الصغيرة في الأسبوع الثاني من الحياة بالمقارنة مع العجول كبيرة السن في عمر 1-2 أشهر. تمت مقارنة هذه القيم مع تلك التي تم تسجيلها

<sup>1</sup> Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum (Sudan)

\* Corresponding author: Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, 13314 Shambat, Sudan. [nawalelkhair@yahoo.com](mailto:nawalelkhair@yahoo.com)

<sup>2</sup> Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Free University of Berlin (Germany)

من قبل باحثين آخرين في الأبقار البالغة، الإنسان وغيرها من الحيوانات. أشارت النتائج أن للعمر تأثيراً مغرياً على نمط الترحيل الكهربائي الشعيري لبروتينات مصل دم العجول.

## Introduction

Serum proteins are known to comprise about 6-7 g/dl of the plasma (Eckersall, 2008). Functionally, plasma proteins are involved in nutrition, maintenance of osmotic pressure, buffering acid-base balance, transport of smaller ions and molecules, haemostasis and protective effect of the immune proteins (Eckersall, 2008). Albumin is the most osmotically active serum protein and it is also an important carrier of many substances. Globulins are a heterogeneous group of proteins that include antibodies and other inflammatory molecules, haemostatic and fibrinolytic proteins, and carriers of lipids, vitamins, and hormones (Eckersall, 2008). Many of the plasma proteins change markedly in diseases (Abate *et al.*, 2000; Rasouli *et al.*, 2005) and with age (Keay and Doxy, 1982; Chen *et al.*, 1999; Chaudhary *et al.*, 2003; Piccione *et al.*, 2009; Tothova *et al.*, 2014).

Capillary electrophoresis of serum proteins (CE) is an established and effective method which has been used as a screening tool for the clinical diagnosis of many diseases in humans (Jellum *et al.*, 1997; Gay-Bellile *et al.*, 2003) and animals (Camacho *et al.*, 2005; Facchini *et al.*, 2010). In clinical practice, CE has been developed and applied to the simultaneous analysis of a great variety of substances of clinical importance such as proteins (Giordano and Paltrinieri, 2010), organic acids (Jager *et al.*, 2003) as well as urine (Jellum *et al.*, 1997), cerebrospinal fluid and hair (Petersen *et al.*, 2003). Recently, many researchers have demonstrated the use of CE in different animal species (Crivellente *et al.*, 2008; Giordano and Paltrinieri, 2010; Piccione *et al.*, 2011; Tothova *et al.*, 2013; Elkhair and Hartmann, 2014) and in a

variety of protein abnormalities (Facchini *et al.*, 2010; Giordano and Paltrinieri, 2010).

Normal serum proteins capillary electrophoretic pattern (CEP) is composed of five fractions, albumin,  $\alpha_1$ -globulin,  $\alpha_2$  globulin,  $\beta$ -globulin and  $\gamma$ -globulin (Eckersall, 2008). Therefore, the clinical interpretation of CEP is based on the variation in the content of one or more of these five major fractions. However, species differences between the animals have been observed by Keay and Doxy (1982). Therefore, the aim of the study was to validate the use of CE in calves and to determine the influence of age in the normal serum protein capillary electrophoretic pattern.

## Materials and Methods

**Animals:** A total number of 32 clinically healthy calves (German Black-coloured and crossbred) were used. The calves were assigned to 6 groups according to their age, i.e. 1<sup>st</sup> week: n=3, 2<sup>nd</sup> week: n=6, 3<sup>rd</sup> week: n=5, 4<sup>th</sup> week: n=4, 1-2 month(s): n=9 and 2-3 months: n=5. The calves were housed individually in stalls in indoor pens and standard calf management procedures were used. Milk was provided three times daily (7:30 am, 13:30 and 22:30 pm) and the calves had free access to fresh water. Hay and grain were offered when the calves were 2 weeks old.

**Sample collection and laboratory analysis:** Venous Blood samples were collected from the jugular vein using plastic syringes (7.5 ml, Pirmvetta®, Laboratory Technique, GmbH, Germany). The samples were centrifuged and the serum was collected in sterile containers for analysis. The fractionation of serum proteins was determined using a capillary electrophoresis technique using a biochemical analyser (Roche Hitachi Modular, Roche).

Statistical analysis was performed using SPSS for Windows version 17.0. The statistical measurements of serum total protein fraction were estimated using descriptive statistics procedures of the same programme. ANOVA tests (Levine's Test and Post Hoc Test) were used to assess the possible significant differences between the age groups. The mean difference was considered significant at  $P \leq 0.05$ .

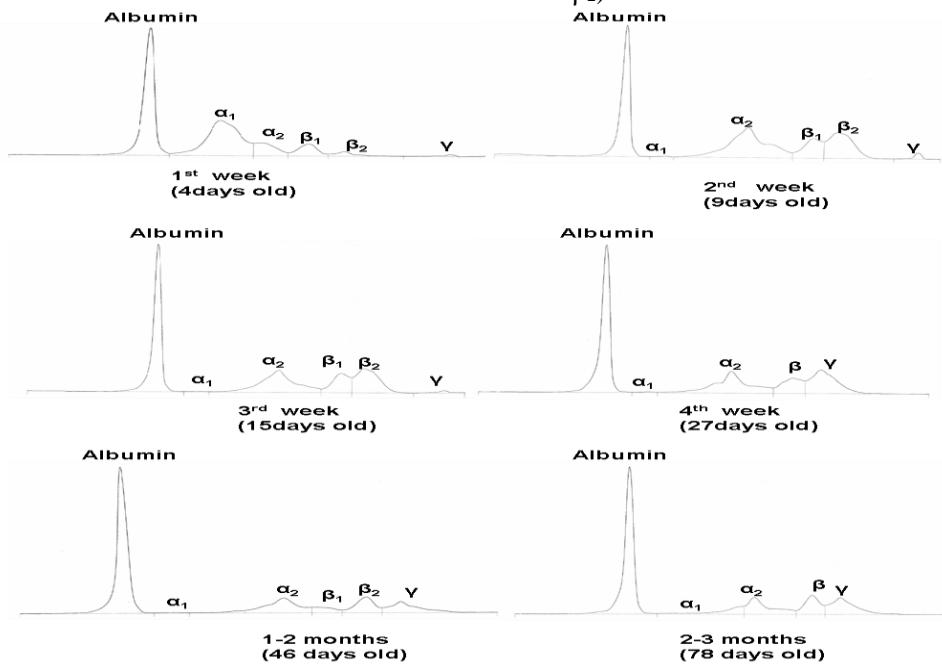
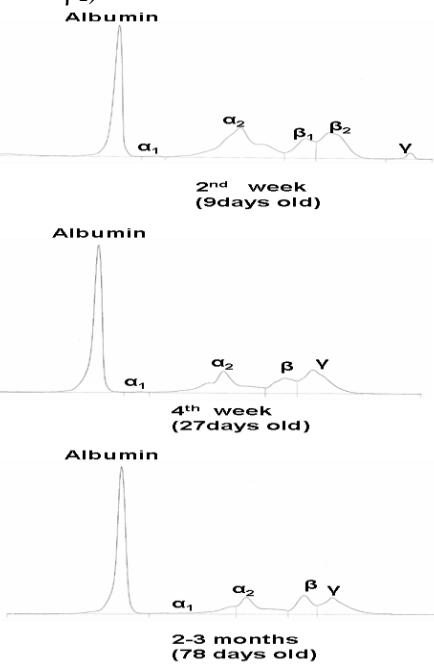




Fig. 1 Serum protein capillary electrophoresis pattern of healthy calves of various ages ( $n = 32$ ).

Table 1 shows that the age of the calves correlated positively ( $P < 0.01$ ) to the serum albumin concentration and the ratio of albumin/globulin. Table 2 summarised the effect of age on serum total protein, albumin, and globulin concentrations and albumin/globulin ratio. The detailed results presented in Fig. 2 A and B indicate that the mean values of serum total protein fluctuated with age. However this pattern of response was not statistically significant. Serum albumin concentration increased gradually with advanced age. The younger calves in the 1<sup>st</sup> week of life showed a significant ( $P < 0.05$ ) lower mean of serum albumin compared to the older calves of 2-3 months. Also the young calves in the 2<sup>nd</sup> week of life showed significantly ( $P < 0.01$ ) lower values of

## Results

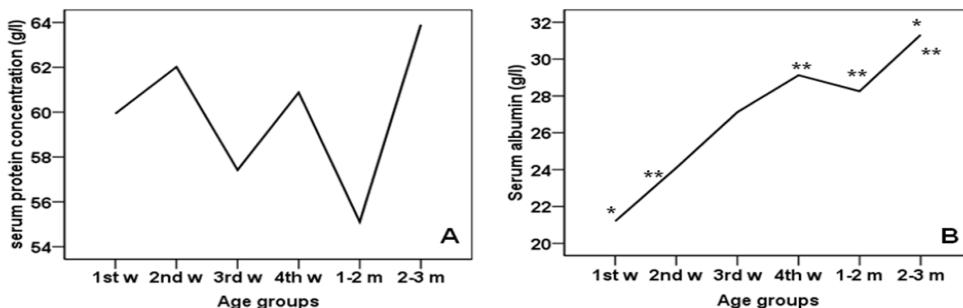
Fig.1 shows the normal pattern of CE in healthy calves of various ages. The pattern of CE identified one albumin, two  $\alpha$ -globulin ( $\alpha_1$  and  $\alpha_2$ ), one  $\beta$ -globulin and one  $\gamma$ -globulin fractions for the age group of 4<sup>th</sup> week and the older calves of 2-3 months. However, the young calves (1-3 week) and the old calves showed two  $\beta$ -globulin fractions ( $\beta_1$  and  $\beta_2$ ).



serum albumin compared to the calves in the 4<sup>th</sup> week of life and the old calves in the age of 1-3 months.

Fig. 3A and B indicate that  $\alpha_1$ -globulin was not affected significantly by the age, the young calves in the 2<sup>nd</sup> week of life had significantly ( $P < 0.01$ ) higher mean value for  $\alpha_2$  globulin concentration compared to the old calves (1-3 months). The values of  $\beta$ - and  $\gamma$ -globulins were not affected significantly by the age (Fig. 4A, B and Fig. 5A, respectively). Albumin/globulin ratio (A/G) increased gradually with age and significantly ( $P < 0.01$ ) higher ratio was observed in the young calves in the 2<sup>nd</sup> week of life compared to aged 1-2 months.

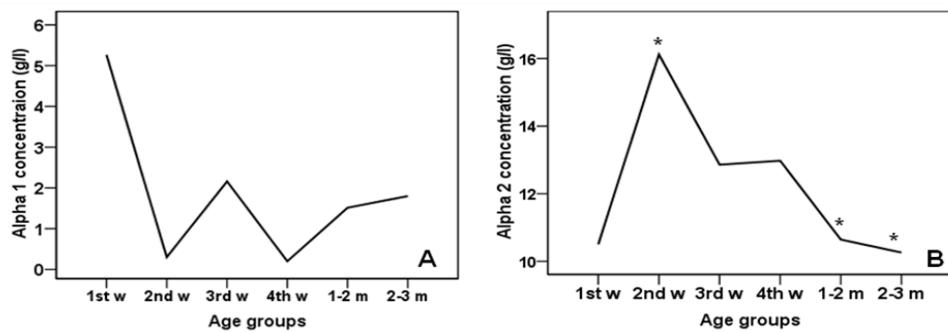
**Table 1 Correlation between the age and serum total protein, albumin and globulin concentrations (g/l) and albumin/globulin ratio in healthy calves (n=32)**


| Parameter                          | Pearson correlation | Level of Significance |
|------------------------------------|---------------------|-----------------------|
| Age - serum total protein (g/l)    | 0.14                | 0.44                  |
| Age - serum albumin (g/l)          | 0.75 *              | 0.0001                |
| Age - alpha 1 globulin (g/l)       | -0.09               | 0.66                  |
| Age - alpha 2 globulin (g/l)       | -0.34               | 0.07                  |
| Age - beta 1 globulin (g/l)        | 0.08                | 0.67                  |
| Age - beta 2 globulin (g/l)        | -0.28               | 0.5                   |
| Age - gamma globulin (g/l)         | 0.29                | 0.13                  |
| Age - albumin/globulin ratio (A/G) | 0.5 *               | 0.01                  |

\* Correlation is significant at the 0.01 level.

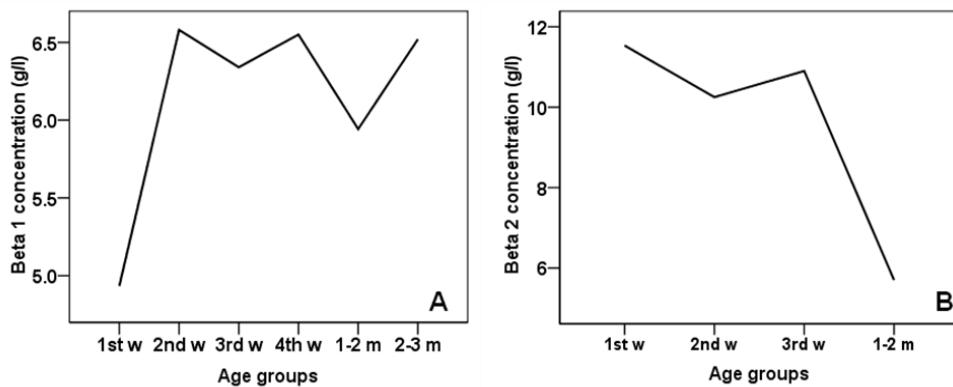
**Table 2 Effect of age on serum total protein, albumin and globulin concentrations(g/l) albumin/globulin ratio in healthy calves (n=32)**

| Parameter                    | Age                       |                           |                           |                           |                          |                           |
|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|
|                              | weeks                     |                           |                           |                           | months                   |                           |
|                              | 1 <sup>st</sup>           | 2 <sup>nd</sup>           | 3 <sup>rd</sup>           | 4 <sup>th</sup>           | 1-2                      | 2-3                       |
| Number of calves             | 3                         | 6                         | 5                         | 4                         | 9                        | 5                         |
| Serum total protein (g/l)    | 60 <sup>a</sup><br>±16    | 62 <sup>a</sup><br>±7     | 57 <sup>a</sup><br>±4     | 61 <sup>a</sup><br>±5     | 55 <sup>a</sup><br>±4    | 64 <sup>a</sup><br>±5     |
| Serum albumin (g/l)          | 21 <sup>a</sup><br>±2.6   | 24 <sup>a</sup><br>±1.2   | 27 <sup>ab</sup><br>±1.3  | 29 <sup>ab</sup><br>±1.4  | 28 <sup>ab</sup><br>±1.9 | 31 <sup>b</sup><br>±2.2   |
| Globulin (g/l)               | 39 <sup>a</sup><br>±14.7  | 38 <sup>a</sup><br>±6.6   | 30 <sup>a</sup><br>±9.8   | 32 <sup>a</sup><br>±6     | 27 <sup>a</sup><br>±3.7  | 33 <sup>a</sup><br>±6.8   |
| Alpha 1 globulin (g/l)       | 5.3 <sup>a</sup><br>±0.5  | 0.3 <sup>a</sup><br>±0.1  | 2.2 <sup>a</sup><br>±0.1  | 0.2 <sup>a</sup><br>±0.1  | 1.5 <sup>a</sup><br>±0.1 | 1.8 <sup>a</sup><br>±0.01 |
| Alpha 2 globulin (g/l)       | 10.5 <sup>ab</sup><br>±6  | 16 <sup>b</sup><br>±2     | 12.9 <sup>ab</sup><br>±6  | 13 <sup>ab</sup><br>±1.7  | 10.6 <sup>a</sup><br>±2  | 10 <sup>a</sup><br>±2     |
| Beta 1 globulin (g/l)        | 4.9 <sup>a</sup><br>±1.8  | 6.6 <sup>a</sup><br>±1    | 6.3 <sup>a</sup><br>±0.5  | 6.6 <sup>a</sup><br>±0.9  | 5.9 <sup>a</sup><br>±3.4 | 6.5 <sup>a</sup><br>±1.4  |
| Beta 2 globulin (g/l)        | 11.5 <sup>a</sup><br>±1.9 | 10.1 <sup>a</sup><br>±2.1 | 10.9 <sup>a</sup><br>±4   | <sup>a</sup> 5.7<br>±0.4  | No $\beta_2$<br>fraction | No $\beta_2$<br>fraction  |
| Gamma globulin (g/l)         | 6.9 <sup>a</sup><br>±1.2  | 10 <sup>a</sup><br>±9     | 8 <sup>a</sup><br>±5      | 12 <sup>a</sup><br>±4.8   | 8.7 <sup>a</sup><br>±2.3 | 13.8 <sup>a</sup><br>±6   |
| Albumin/globulin ratio (A/G) | 0.6 <sup>ab</sup><br>±0.2 | 0.7 <sup>a</sup><br>±0.1  | 0.9 <sup>ab</sup><br>±0.1 | 0.9 <sup>ab</sup><br>±0.2 | 1.1 <sup>b</sup><br>±0.1 | 1 <sup>ab</sup><br>±0.2   |

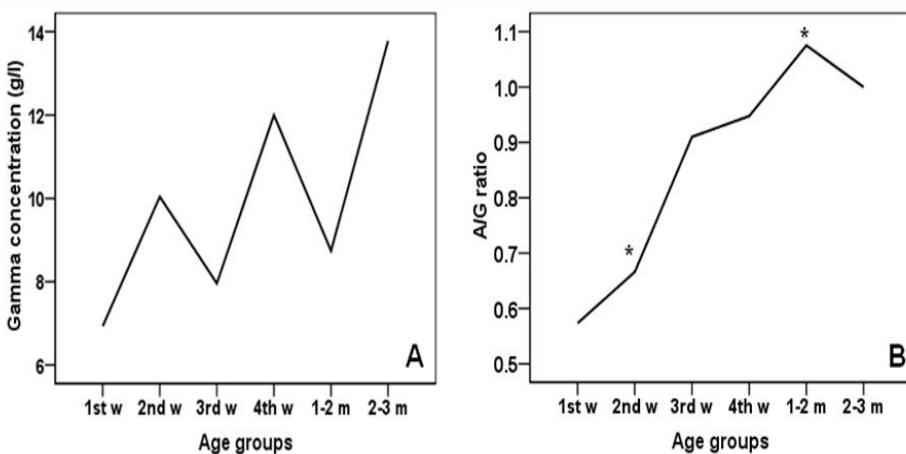

Means within the same row bearing different superscripts are significantly different at  $P \leq 0.05$



The mean difference is significant at the level of  $P < 0.05$  \*,  $P < 0.01$  \*\*


**Fig. 2 A, B** Mean values of serum total protein and albumin concentrations (g/l) in calves (n=32)






The mean difference is significant at the level of  $P<0.05$  \*

**Fig. 3 A, B** Mean values of alpha 1 and 2 globulins concentration (g/l) in calves (n=32)



**Fig. 4 A, B** Mean values of beta 1 and 2 globulins concentration (g/l) in calves (n=32)



The mean difference is significant at the level of  $P<0.05$  \*

**Fig. 5 A, B** Mean values of gamma globulin concentration and albumin/globulin ratio (A/G) (g/l) in calves (n=32)

## Discussion

The main finding of the present study is that CE has been applied to the serum of the calves. CE produced five peaks comprising one albumin,  $\alpha_1$  and  $\alpha_2$ ,  $\beta$  and  $\gamma$ -globulins fractions (Fig. 1). However, Tothova *et al.*, (2014) have reported that serum protein electrophoresis on agarose gel, produced six peaks comprising one albumin,  $\alpha_1$  and  $\alpha_2$ ,  $\beta_1$  and  $\beta_2$  and  $\gamma$ -globulin fractions in calves. The variation in the appearance of protein fractions may be attributed to the method used. Albumin represented the main fraction of serum proteins determined by CE in all age groups (Fig 1). In the 1<sup>st</sup> week of life,  $\alpha_1$  represented higher fraction compared with  $\alpha_2$ ,  $\beta$  and  $\gamma$ -globulin fractions. However, with advanced age  $\alpha_1$  represented the lowest fraction compared to the other globulins. From the 4<sup>th</sup> week of life to 2-3 months,  $\gamma$ -globulin showed higher fraction compared to the other globulins. The higher concentrations of  $\gamma$ -globulins in older calves compared to the values in younger animals may be attributed to good alimentary canal absorption and the normal process of growth or due to the gradual increase in immunoglobulins (Paltrinieri *et al.*, 2008). Similar changes were observed in calves by other investigators (Mohri *et al.*, 2007; Tothova *et al.*, 2014). Furthermore, Chaudhary *et al.* (2003) and Elkhair and Hartmann (2014) suggested that lower concentrations of  $\gamma$ -globulins in young calves are caused by the immaturity of the lymphoid system or immature immune system which remain low until the production of globulin by the maturing immune system. The variation in these values can be considered as age-dependent relationship between the groups. However, the young calves until the 3<sup>rd</sup> week of life showed  $\beta_1$  and  $\beta_2$  globulins fraction accompanied by lower  $\gamma$ -globulins fraction compared to the other age groups. Previously, Keay and Doxey (1982) found higher values of  $\alpha$ - and  $\beta$ -globulins between calves at the age of 3-4 weeks and adult cattle..

The mean values of serum total protein concentration obtained in the present study for calves (55-64 g/l, Fig 2B) were similar to the reference range reported by Stöber and Gründer, (1990). In the older calves, the higher mean value of serum protein concentration (64 g/l) can be attributed to the higher concentration of  $\gamma$ -globulins observed (26% = 16.8 g/l) (Fig. 5A).

It has been reported previously that the age may markedly influence the electrophoretic pattern of serum proteins with decreasing albumin and increasing globulin concentrations with advancing age in calves, goats, and camels (Tothova *et al.*, 2014; Alberghina *et al.*, 2010; Elkhair and Hartmann, 2014). In the present study the initial mean values of albumin concentration for the youngest calves in the 1<sup>st</sup> week of life are lower compared with the reference range reported by Stöber and Gründer (1990). This may be attributed to the increase in serum globulin concentration observed, particularly  $\beta_2$  concentration (Fig. 4B). These results are in agreement with those reported previously by Knowles *et al.* (2000).

The present results indicate that the increased albumin/globulin ratio (A/G) may be attributed to decreased albumin and increased globulin concentrations with advancing age. Kaneko (1997) reported that albumin/globulin ratio is of special interest for clinicians because it allows systematic classification of the electrophoretic profile and identification of dysproteinemias. Furthermore, Alberghina *et al.* (2010) recommended that the A/G ratio should be interpreted cautiously with special emphasis on their change.

## Conclusion

The present study indicates that the serum electrophoresis pattern of the calves is influenced by age in addition to genetic and the nutritional status of the animals. The data could be utilised for clinical monitoring of dysproteinemias and to establish reference intervals for capillary electrophoresis in healthy calves.

## References

- Abate, O.; Zanatta, R.; Malisano, T. and Dotta, U. (2000). Canine serum protein patterns using high-resolution electrophoresis (HRE). *Vet. J.*, 159: 154-160.
- Alberghina, D.; Casella, S.; Vazzana, I.; Ferrantelli, V.; Giannetto, C. and Piccione, G. (2010). Analysis of serum proteins in clinically healthy goats (*Capra hircus*) using agarose gel electrophoresis. *Vet. Clin. Path.*, 39:317-321.
- Camacho, A.T.; Guttian, F.J.; Pallas, J.J.; Olmenda, S.; Goethert, H.; Telford, S. and Spielman, A. (2005). Serum protein response and renal failure in

canine *Babesia annae* infection. *Vet. Res.*, 36: 713-722.

Chaudhary, Z.I.; Iqbal, J. and Rashid, J. (2003). Serum protein electrophoretic pattern in young and adult camels. *Aust. Vet. J.*, 81(10): 625-626.

Chen, J. C.; Chang, C. J.; Peh, H. C. and Chen, S. Y. (1999). Serum protein levels and neonatal growth rate of Nubian goat kids in Taiwan area. *Small Rum. Res.*, 32: 153-160.

Crivellente, F.; Bonato, M. and Cristofori, P. (2008). Analysis of mouse, rat, dog, marmoset, and human serum proteins by capillary electrophoresis: comparison with agarose gel electrophoresis. *Vet. Clin. Pathol.*, 37:73-78.

Eckersall, P. D. (2008). Proteins, proteomics and the dysprteinaemias. Chapter 5. In: *Clinical Biochemistry of Domestic Animals*, Ed. Kaneko, J. J., Harvey, J. W. and Bruss, M. L., 6<sup>th</sup> edition, pp: 117-155, Academic Press, Elsevier Inc. USA.

Elkhair, N. M. and Hartmann, H. (2014). Serum protein capillary electrophoretic pattern in camels (*Camelus dromedarius*): Influence of age and sex. *J. Life Sci.*, 8(1): 78-81.

Facchini, R. V.; Bertazzolo, W.; Zuliani, D.; Bonfanti, U.; Caldin, M. and Roccabianca, P. (2010). Detection of biclonal gammopathy by capillary zone electrophoresis in a cat and a dog with plasma cell neoplasia. *Vet. Clin. Pathol.*, 39:440-446.

Gay-Bellile, C.; Bengoufa, D.; Houze, P.; Le Carrer, D.; Benlakehal, M.; Bousquet, B.; Gourmet, B. and Le Bricon, T. (2003). Automated multicapillary electrophoresis for analysis of human serum protein. *Clin. Chem.*, 49(11): 1909-1915.

Giordano, A. and Paltrinieri, S. (2010). Interpretation of capillary zone electrophoresis compared with cellulose acetate and agarose gel electrophoresis: reference intervals and diagnostic efficiency in dogs and cats. *Vet. Clin. Pathol.*, 39:464-473.

Jager, A. V.; Marina, F. and Tavares, M. (2003). Evaluation of diabetic ketoacidosis-related ionic metabolites in human blood serum by capillary electrophoresis, 24:1208-1214.

Jellum, E.; Thorsrud, A. K. and Time, E. (1991). Capillary electrophoresis for diagnosis and studies of human disease, particularly metabolic disorders. *J. Chromatogr.*, 559:455-465.

Kaneko J. J. (1997). Serum protein and dysproteinemias. In: Kaneko J. J., Harvey J. W., Bruss M. L. eds. *Clinical Biochemistry of Domestic Animals*. 5<sup>th</sup> edition. San Diego, CA: Academic Press, pp: 117-138.

Keay, G. and Doxy, D. L. (1982). A comparison of the serum proteins electrophoretic of young and adult animals. *Vet. Res. Commun.*, 5: 271-276.

Knowles, T. G.; Edwards, J. E.; Bazeley, K. J.; Brown, S. N.; Butterworth, A. and Warriss, P. D. (2000). Changes in the blood biochemical and haematological profile in neonatal calves with age. *Vet. Rec.*, 18:593-598.

Mohri, M.; Sharifi, K. and Eidi, S. (2007). Haematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults. *Res. Vet. Sci.*, 83:30-39.

Paltrinieri, S.; Giordano, A.; Villani, M.; Manfrin, M.; Panzani, S. and Veronesi, M.C. (2008). Influence of age and foaling on plasma protein electrophoresis and serum amyloid A and their possible role as markers of equine neonatal septicaemia. *Vet. J.*, 176:393-396.

Petersen, J. R.; Okorodudu, A. O.; Mohammad, A. and Payne, D. A. (2003). Capillary electrophoresis and its application in the clinical laboratory. *Clinica Chimica Acta*, 330:1-30.

Piccione, G.; Casella, S.; Giannetto, C.; Vazzana, I.; Niutta, P. P. and Giudice, E. (2009). Influence of age on profile of serum proteins in the calf. *Acta Vet.-Beograd*, 85:413-422.

Piccione, G.; Scianó, S.; Messina, V.; Casella, S. and Zumbo, A. (2011). Changes in serum total proteins, protein fractions and albumin- globulin ratio during neonatal period in goat kids and their mothers after parturition. *Ann. Anim. Sci.*, 11:251-260.

Rasouli, M.; Okhovatian, A. and Enderami, A. (2005). Serum protein as indicator of malignancy: multivariate logistic regression and ROC analyses. *Clin. Chem. Lab. Ned.*, 43(2): 918-918.

Stöber, M. and Gründer, H.D. (1990). Circulation. In: *Die Klinische Untersuchungen des Rindes*. 3<sup>rd</sup> Edition, Edited by G. Dirksen, H.D, Gründer, M. Stöber. Berlin and Hamburg. Verlag Paul Parly., pp: 171-241.

Tothova, C. Nagy; Seidel, H. and Kovac, G. (2013). Serum protein electrophoretic pattern in clinically healthy calves and cows determined by agarose gel electrophoresis. *Comp. Clin. Pathol.*, 22:15-20.

Tothova, C.; Nagy, O. and Kovac, G. (2014). Changes in the concentrations of serum protein

fractions in calves with age and nutrition. Italian J. Anim. Sci., 13:107-111.